3mhv
From Proteopedia
Crystal Structure of Vps4 and Vta1
Structural highlights
FunctionVPS4_YEAST Involved in the transport of biosynthetic membrane proteins from the prevacuolar/endosomal compartment to the vacuole. Required for multivesicular body (MVB) protein sorting. Catalyzes the ATP-dependent dissociation of class E VPS proteins from endosomal membranes, such as the disassembly of the ESCRT-III complex.[1] [2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe ESCRT complexes are required for multivesicular body biogenesis, macroautophagy, cytokinesis, and the budding of HIV-1. The final step in the ESCRT cycle is the disassembly of the ESCRT-III lattice by the AAA+ ATPase Vps4. Vps4 assembles on its membrane-bound ESCRT-III substrate with its cofactor, Vta1. The crystal structure of the dimeric VSL domain of yeast Vta1 with the small ATPase and the betadomains of Vps4 was determined. Residues involved in structural interactions are conserved and are required for binding in vitro and for Cps1 sorting in vivo. Modeling of the Vta1 complex in complex with the lower hexameric ring of Vps4 indicates that the two-fold axis of the Vta1 VSL domain is parallel to within approximately 20 degrees of the six-fold axis of the hexamer. This suggests that Vta1 might not crosslink the two hexameric rings of Vps4, but rather stabilizes an array of Vps4-Vta1 complexes for ESCRT-III disassembly. Structural role of the Vps4-Vta1 interface in ESCRT-III recycling.,Yang D, Hurley JH Structure. 2010 Aug 11;18(8):976-84. PMID:20696398[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|