First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

3o80

From Proteopedia

Jump to: navigation, search


3o80, resolution 2.18Å ()
Ligands:
Gene: KLLA0D11352g, RAG5 (Kluyveromyces lactis)
Activity: Hexokinase, with EC number 2.7.1.1
Related: 3o08, 3o1b, 3o1w, 3o4w, 3o5b, 3o6w, 3o8m


Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Contents

Crystal structure of monomeric KlHxk1 in crystal form IX (open state)

Publication Abstract from PubMed

Crystal structures of the unique hexokinase KlHxk1 of the yeast Kluyveromyces lactis were determined using eight independent crystal forms. In five crystal forms, a symmetrical ring-shaped homodimer was observed, corresponding to the physiological dimer existing in solution as shown by small-angle x-ray scattering. The dimer has a head-to-tail arrangement such that the small domain of one subunit interacts with the large domain of the other subunit. Dimer formation requires favorable interactions of the 15 N-terminal amino acids that are part of the large domain with amino acids of the small domain of the opposite subunit, respectively. The head-to-tail arrangement involving both domains of the two KlHxk1 subunits is appropriate to explain the reduced activity of the homodimer as compared with the monomeric enzyme and the influence of substrates and products on dimer formation and dissociation. In particular, the structure of the symmetrical KlHxk1 dimer serves to explain why phosphorylation of conserved residue Ser-15 may cause electrostatic repulsions with nearby negatively charged residues of the adjacent subunit, thereby inducing a dissociation of the homologous dimeric hexokinases KlHxk1 and ScHxk2. Two complex structures of KlHxk1 with bound glucose provide a molecular model of substrate binding to the open conformation and the subsequent classical domain closure motion of yeast hexokinases. The entirety of the novel data extends the current concept of glucose signaling in yeast and complements the induced-fit model by integrating the events of N-terminal phosphorylation and dissociation of homodimeric yeast hexokinases.

Crystal Structure of Hexokinase KlHxk1 of Kluyveromyces lactis: A MOLECULAR BASIS FOR UNDERSTANDING THE CONTROL OF YEAST HEXOKINASE FUNCTIONS VIA COVALENT MODIFICATION AND OLIGOMERIZATION., Kuettner EB, Kettner K, Keim A, Svergun DI, Volke D, Singer D, Hoffmann R, Muller EC, Otto A, Kriegel TM, Strater N, J Biol Chem. 2010 Dec 24;285(52):41019-33. Epub 2010 Oct 12. PMID:20943665

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

About this Structure

3o80 is a 1 chain structure with sequence from Kluyveromyces lactis. Full crystallographic information is available from OCA.

See Also

Reference

  • Kuettner EB, Kettner K, Keim A, Svergun DI, Volke D, Singer D, Hoffmann R, Muller EC, Otto A, Kriegel TM, Strater N. Crystal Structure of Hexokinase KlHxk1 of Kluyveromyces lactis: A MOLECULAR BASIS FOR UNDERSTANDING THE CONTROL OF YEAST HEXOKINASE FUNCTIONS VIA COVALENT MODIFICATION AND OLIGOMERIZATION. J Biol Chem. 2010 Dec 24;285(52):41019-33. Epub 2010 Oct 12. PMID:20943665 doi:10.1074/jbc.M110.185850
  • Kuettner EB, Kriegel TM, Keim A, Naumann M, Strater N. Crystallization and preliminary X-ray diffraction studies of hexokinase KlHxk1 from Kluyveromyces lactis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 May 1;63(Pt, 5):430-3. Epub 2007 Apr 20. PMID:17565189 doi:10.1107/S1744309107018271

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools