3qag
From Proteopedia
Human Glutathione Transferase O2 with glutathione -new crystal form
Structural highlights
FunctionGSTO2_HUMAN Exhibits glutathione-dependent thiol transferase activity. Has high dehydroascorbate reductase activity and may contribute to the recycling of ascorbic acid. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA).[1] Publication Abstract from PubMedThe reduction of dehydroascorbate (DHA) to ascorbic acid (AA) is a vital cellular function. The omega-class glutathione S-transferases (GSTs) catalyze several reductive reactions in cellular biochemistry, including DHA reduction. In humans, two isozymes (GSTO1-1 and GSTO2-2) with significant DHA reductase (DHAR) activity are found, sharing 64% sequence identity. While the activity of GSTO2-2 is higher, it is significantly more unstable in vitro. We report the first crystal structures of human GSTO2-2, stabilized through site-directed mutagenesis and determined at 1.9 A resolution in the presence and absence of glutathione (GSH). The structure of a human GSTO1-1 has been determined at 1.7 A resolution in complex with the reaction product AA, which unexpectedly binds in the G-site, where the glutamyl moiety of GSH binds. The structure suggests a similar mode of ascorbate binding in GSTO2-2. This is the first time that a non-GSH-based reaction product has been observed in the G-site of any GST. AA stacks against a conserved aromatic residue, F34 (equivalent to Y34 in GSTO2-2). Mutation of Y34 to alanine in GSTO2-2 eliminates DHAR activity. From these structures and other biochemical data, we propose a mechanism of substrate binding and catalysis of DHAR activity. Structural Insights into the Dehydroascorbate Reductase Activity of Human Omega-Class Glutathione Transferases.,Zhou H, Brock J, Liu D, Board PG, Oakley AJ J Mol Biol. 2012 Apr 18. PMID:22522127[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|