4ass
From Proteopedia
TubR bound to tubC - 26 bp - from Bacillus thuringiensis serovar israelensis pBtoxis
Structural highlights
FunctionTUBR_BACTI A DNA-binding protein that is part of the type III plasmid partition system used to ensure correct segregation of the pBtoxis plasmid. Cooperatively binds to the centromere-like site (tubC), which may seed filament formation by the TubZ polymerizing GTPase, stabilizing TubZ filaments. TubR-tubC complexes track the depolymerizing minus end of the filament, probably pulling plasmid within the cell (PubMed:20534443, PubMed:23010931, PubMed:25825718). Required for plasmid replication (PubMed:16936050, PubMed:17873046). Negatively regulates levels of TubZ; its effect on RNA expression has not been shown (Probable). Specifically binds iterons, 12-bp imperfect direct repeats that function as a plasmid origin of replication (PubMed:17873046, PubMed:23010931, PubMed:25825718). Four TubR dimers bind to tubC, forming an extended bent DNA-protein filament with protein wrapping helically around the outside of the DNA (PubMed:20534443, PubMed:23010931).[1] [2] [3] [4] [5] [6] Publication Abstract from PubMedBacterial plasmid partitioning systems segregate plasmids into each daughter cell. In the well-understood ParMRC plasmid partitioning system, adapter protein ParR binds to centromere parC, forming a helix around which the DNA is externally wrapped. This complex stabilizes the growth of a filament of actin-like ParM protein, which pushes the plasmids to the poles. The TubZRC plasmid partitioning system consists of two proteins, tubulin-like TubZ and TubR, and a DNA centromere, tubC, which perform analogous roles to those in ParMRC, despite being unrelated in sequence and structure. We have dissected in detail the binding sites that comprise Bacillus thuringiensis tubC, visualized the TubRC complex by electron microscopy, and determined a crystal structure of TubR bound to the tubC repeat. We show that the TubRC complex takes the form of a flexible DNA-protein filament, formed by lateral coating along the plasmid from tubC, the full length of which is required for the successful in vitro stabilization of TubZ filaments. We also show that TubR from Bacillus megaterium forms a helical superstructure resembling that of ParR. We suggest that the TubRC DNA-protein filament may bind to, and stabilize, the TubZ filament by forming such a ring-like structure around it. The helical superstructure of this TubRC may indicate convergent evolution between the actin-containing ParMRC and tubulin-containing TubZRC systems. Superstructure of the centromeric complex of TubZRC plasmid partitioning systems.,Aylett CH, Lowe J Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16522-7. doi:, 10.1073/pnas.1210899109. Epub 2012 Sep 25. PMID:23010931[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|