4c77
From Proteopedia
Phenylacetone monooxygenase: oxidised R337K mutant in complex with APADP
Structural highlights
FunctionPAMO_THEFY Catalyzes a Baeyer-Villiger oxidation reaction, i.e. the insertion of an oxygen atom into a carbon-carbon bond adjacent to a carbonyl, which converts ketones to esters. Is most efficient with phenylacetone as substrate, leading to the formation of benzyl acetate. Can also oxidize other aromatic ketones (benzylacetone, alpha-methylphenylacetone and 4-hydroxyacetophenone), some aliphatic ketones (dodecan-2-one and bicyclohept-2-en-6-one) and sulfides (e.g. methyl 4-tolylsulfide). Publication Abstract from PubMedA general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP+ and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically-modified cofactor analogues. Like pieces of a jigsaw puzzle, the enzyme active site juxtaposes the flavin and nicotinamide rings, harnessing their H-bonding and steric properties to finely construct an oxygen-reacting center that restrains the flavin-peroxide intermediate in a catalytically-competent orientation. Strikingly, the regio- and stereoselectivities of the reaction are essentially unaffected by cofactor modifications. These observations indicate a remarkable robustness of this complex multi-cofactor active site, which has implications for enzyme design based on cofactor engineering approaches. Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction.,Martinoli C, Dudek HM, Orru R, Edmondson DE, Fraaije MW, Mattevi A ACS Catal. 2013;3(12):3058-3062. PMID:24443704[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|