| Structural highlights
Function
PETH2_THEFU Catalyzes the hydrolysis of cutin, a polyester that forms the structure of plant cuticle (PubMed:23604968, PubMed:24728714, PubMed:31690819, Ref.4). Shows esterase activity towards p-nitrophenol-linked aliphatic esters (pNP-aliphatic esters) (PubMed:15638529, PubMed:23604968, PubMed:24728714, PubMed:25545638, PubMed:31690819, Ref.4). Also hydrolyzes the triglycerides triacetin, tributyrin, tricaprin, and trilaurin, with a preference for short-chain substrates (PubMed:15638529). Hydrolyzes the hemicellulose xylan (PubMed:20816933). Capable of degrading the plastic poly(ethylene terephthalate) (PET), the most abundant polyester plastic in the world (PubMed:25545638, PubMed:31690819, PubMed:32269349, Ref.4). Can also depolymerize poly(epsilon-caprolactone) (PCL), a synthetic aliphatic biodegradable polyester (PubMed:15638529). Hydrolyzes polyoxyethylenesorbate esters with a preference for shorter chain lengths (PubMed:20816933).[1] [2] [3] [4] [5] [6] [7] [8]
Publication Abstract from PubMed
Bacterial cutinases are promising catalysts for the modification and degradation of the widely used plastic polyethylene terephthalate (PET). The improvement of the enzyme for industrial purposes is limited due to the lack of structural information for cutinases of bacterial origin. We have crystallized and structurally characterized a cutinase from Thermobifida fusca KW3 (TfCut2) in free as well as in inhibitor-bound form. Together with our analysis of the thermal stability and modelling studies, we suggest possible reasons for the outstanding thermostability in comparison to the less thermostable homolog from Thermobifida alba AHK119 and propose a model for the binding of the enzyme towards its polymeric substrate. The TfCut2 structure is the basis for the rational design of catalytically more efficient enzyme variants for the hydrolysis of PET and other synthetic polyesters.
Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca.,Roth C, Wei R, Oeser T, Then J, Follner C, Zimmermann W, Strater N Appl Microbiol Biotechnol. 2014 Apr 13. PMID:24728714[9]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kleeberg I, Welzel K, Vandenheuvel J, Muller RJ, Deckwer WD. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules. 2005 Jan-Feb;6(1):262-70. doi: 10.1021/bm049582t. PMID:15638529 doi:http://dx.doi.org/10.1021/bm049582t
- ↑ Huang YC, Chen GH, Chen YF, Chen WL, Yang CH. Heterologous expression of thermostable acetylxylan esterase gene from Thermobifida fusca and its synergistic action with xylanase for the production of xylooligosaccharides. Biochem Biophys Res Commun. 2010 Oct 1;400(4):718-23. doi:, 10.1016/j.bbrc.2010.08.136. Epub 2010 Sep 9. PMID:20816933 doi:http://dx.doi.org/10.1016/j.bbrc.2010.08.136
- ↑ Hegde K, Veeranki VD. Production optimization and characterization of recombinant cutinases from Thermobifida fusca sp. NRRL B-8184. Appl Biochem Biotechnol. 2013 Jun;170(3):654-75. doi: 10.1007/s12010-013-0219-x. , Epub 2013 Apr 19. PMID:23604968 doi:http://dx.doi.org/10.1007/s12010-013-0219-x
- ↑ Roth C, Wei R, Oeser T, Then J, Follner C, Zimmermann W, Strater N. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol. 2014 Apr 13. PMID:24728714 doi:http://dx.doi.org/10.1007/s00253-014-5672-0
- ↑ Then J, Wei R, Oeser T, Barth M, Belisario-Ferrari MR, Schmidt J, Zimmermann W. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol J. 2015 Apr;10(4):592-8. doi: 10.1002/biot.201400620. Epub 2015 Jan, 19. PMID:25545638 doi:http://dx.doi.org/10.1002/biot.201400620
- ↑ Furukawa M, Kawakami N, Tomizawa A, Miyamoto K. Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Sci Rep. 2019 Nov 5;9(1):16038. doi: 10.1038/s41598-019-52379-z. PMID:31690819 doi:http://dx.doi.org/10.1038/s41598-019-52379-z
- ↑ Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guemard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, Andre I, Duquesne S, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020 Apr;580(7802):216-219. doi: 10.1038/s41586-020-2149-4. Epub 2020 Apr, 8. PMID:32269349 doi:http://dx.doi.org/10.1038/s41586-020-2149-4
- ↑ Huang YC, Chen GH, Chen YF, Chen WL, Yang CH. Heterologous expression of thermostable acetylxylan esterase gene from Thermobifida fusca and its synergistic action with xylanase for the production of xylooligosaccharides. Biochem Biophys Res Commun. 2010 Oct 1;400(4):718-23. doi:, 10.1016/j.bbrc.2010.08.136. Epub 2010 Sep 9. PMID:20816933 doi:http://dx.doi.org/10.1016/j.bbrc.2010.08.136
- ↑ Roth C, Wei R, Oeser T, Then J, Follner C, Zimmermann W, Strater N. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol. 2014 Apr 13. PMID:24728714 doi:http://dx.doi.org/10.1007/s00253-014-5672-0
|