4eis

From Proteopedia

Jump to: navigation, search

Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases (PMO-3)

Structural highlights

4eis is a 2 chain structure with sequence from Neurospora crassa OR74A. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.37Å
Ligands:CU, DAH, HIC, NAG, PER
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q7SA19_NEUCR

Publication Abstract from PubMed

The use of cellulases remains a major cost in the production of renewable fuels and chemicals from lignocellulosic biomass. Fungi secrete copper-dependent polysaccharide monooxygenases (PMOs) that oxidatively cleave crystalline cellulose and improve the effectiveness of cellulases. However, the means by which PMOs recognize and cleave their substrates in the plant cell wall remain unclear. Here, we present structures of Neurospora crassa PMO-2 and PMO-3 at 1.10 and 1.37 A resolution, respectively. In the structures, dioxygen species are found in the active sites, consistent with the proposed cleavage mechanism. Structural and sequence comparisons between PMOs also reveal that the enzyme substrate-binding surfaces contain highly varied aromatic amino acid and glycosylation positions. The structures reported here provide evidence for a wide range of PMO substrate recognition patterns in the plant cell wall, including binding modes that traverse multiple glucan chains.

Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases.,Li X, Beeson WT 4th, Phillips CM, Marletta MA, Cate JH Structure. 2012 May 9. PMID:22578542[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Li X, Beeson WT 4th, Phillips CM, Marletta MA, Cate JH. Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases. Structure. 2012 May 9. PMID:22578542 doi:10.1016/j.str.2012.04.002

Contents


PDB ID 4eis

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools