4kvx
From Proteopedia
Crystal structure of Naa10 (Ard1) bound to AcCoA
Structural highlights
FunctionARD1_SCHPO Catalytic component of the NatA N-terminal acetyltransferase, which catalyzes acetylation of proteins beginning with Met-Ser, Met-Gly and Met-Ala. N-acetylation plays a role in normal eukaryotic translation and processing, protect against proteolytic degradation and protein turnover (By similarity). Publication Abstract from PubMedN-terminal acetylation is ubiquitous among eukaryotic proteins and controls a myriad of biological processes. Of the N-terminal acetyltransferases (NATs) that facilitate this cotranslational modification, the heterodimeric NatA complex has the most diversity for substrate selection and modifies the majority of all N-terminally acetylated proteins. Here, we report the X-ray crystal structure of the 100-kDa holo-NatA complex from Schizosaccharomyces pombe, in the absence and presence of a bisubstrate peptide-CoA-conjugate inhibitor, as well as the structure of the uncomplexed Naa10p catalytic subunit. The NatA-Naa15p auxiliary subunit contains 13 tetratricopeptide motifs and adopts a ring-like topology that wraps around the NatA-Naa10p subunit, an interaction that alters the Naa10p active site for substrate-specific acetylation. These studies have implications for understanding the mechanistic details of other NAT complexes and how regulatory subunits modulate the activity of the broader family of protein acetyltransferases. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex.,Liszczak G, Goldberg JM, Foyn H, Petersson EJ, Arnesen T, Marmorstein R Nat Struct Mol Biol. 2013 Aug 4. doi: 10.1038/nsmb.2636. PMID:23912279[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|