| Structural highlights
Disease
ALR_HUMAN Congenital cataract - progressive muscular hypotonia - hearing loss - developmental delay. The disease is caused by mutations affecting the gene represented in this entry.
Function
ALR_HUMAN Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.[1] [2] [3] [4] [5] Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.[6] [7] [8] [9] [10]
See Also
References
- ↑ Daithankar VN, Farrell SR, Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry. 2009 Jun 9;48(22):4828-37. doi: 10.1021/bi900347v. PMID:19397338 doi:http://dx.doi.org/10.1021/bi900347v
- ↑ Sztolsztener ME, Brewinska A, Guiard B, Chacinska A. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic. 2013 Mar;14(3):309-20. doi: 10.1111/tra.12030. Epub 2012 Dec 16. PMID:23186364 doi:http://dx.doi.org/10.1111/tra.12030
- ↑ Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry. 2010 Jul 1. PMID:20593814 doi:10.1021/bi100912m
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K. Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4811-6. Epub 2011 Mar 7. PMID:21383138 doi:10.1073/pnas.1014542108
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc. 2012 Jan 25;134(3):1442-5. Epub 2012 Jan 6. PMID:22224850 doi:10.1021/ja209881f
- ↑ Daithankar VN, Farrell SR, Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry. 2009 Jun 9;48(22):4828-37. doi: 10.1021/bi900347v. PMID:19397338 doi:http://dx.doi.org/10.1021/bi900347v
- ↑ Sztolsztener ME, Brewinska A, Guiard B, Chacinska A. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic. 2013 Mar;14(3):309-20. doi: 10.1111/tra.12030. Epub 2012 Dec 16. PMID:23186364 doi:http://dx.doi.org/10.1111/tra.12030
- ↑ Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry. 2010 Jul 1. PMID:20593814 doi:10.1021/bi100912m
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K. Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4811-6. Epub 2011 Mar 7. PMID:21383138 doi:10.1073/pnas.1014542108
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc. 2012 Jan 25;134(3):1442-5. Epub 2012 Jan 6. PMID:22224850 doi:10.1021/ja209881f
|