| Structural highlights
Function
THIO_HUMAN Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates AP-1 transcriptional activity.[1] [2] [3] [4] [5] ADF augments the expression of the interleukin-2 receptor TAC (IL2R/P55).[6] [7] [8] [9] [10]
Publication Abstract from PubMed
The redox-dependent inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP) plays a pivotal role in various cancers and metabolic syndromes. However, the molecular mechanism of this regulation is largely unknown. Here, we present the crystal structure of the TRX-TXNIP complex and demonstrate that the inhibition of TRX by TXNIP is mediated by an intermolecular disulphide interaction resulting from a novel disulphide bond-switching mechanism. Upon binding to TRX, TXNIP undergoes a structural rearrangement that involves switching of a head-to-tail interprotomer Cys63-Cys247 disulphide between TXNIP molecules to an interdomain Cys63-Cys190 disulphide, and the formation of a de novo intermolecular TXNIP Cys247-TRX Cys32 disulphide. This disulphide-switching event unexpectedly results in a domain arrangement of TXNIP that is entirely different from those of other arrestin family proteins. We further show that the intermolecular disulphide bond between TRX and TXNIP dissociates in the presence of high concentrations of reactive oxygen species. This study provides insight into TRX and TXNIP-dependent cellular regulation.
The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein.,Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, Jeong JO, Oh TK, Choi I, Lee JO, Kim MH Nat Commun. 2014 Jan 6;5:2958. doi: 10.1038/ncomms3958. PMID:24389582[11]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Jacquot JP, de Lamotte F, Fontecave M, Schurmann P, Decottignies P, Miginiac-Maslow M, Wollman E. Human thioredoxin reactivity-structure/function relationship. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1375-81. PMID:2176490
- ↑ Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-8. PMID:9108029
- ↑ Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 2000 Dec 1;60(23):6688-95. PMID:11118054
- ↑ Mitchell DA, Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol. 2005 Aug;1(3):154-8. Epub 2005 Jul 10. PMID:16408020 doi:http://dx.doi.org/nchembio720
- ↑ Mitchell DA, Morton SU, Fernhoff NB, Marletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11609-14. Epub 2007 Jul 2. PMID:17606900 doi:http://dx.doi.org/0704898104
- ↑ Jacquot JP, de Lamotte F, Fontecave M, Schurmann P, Decottignies P, Miginiac-Maslow M, Wollman E. Human thioredoxin reactivity-structure/function relationship. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1375-81. PMID:2176490
- ↑ Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-8. PMID:9108029
- ↑ Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 2000 Dec 1;60(23):6688-95. PMID:11118054
- ↑ Mitchell DA, Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol. 2005 Aug;1(3):154-8. Epub 2005 Jul 10. PMID:16408020 doi:http://dx.doi.org/nchembio720
- ↑ Mitchell DA, Morton SU, Fernhoff NB, Marletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11609-14. Epub 2007 Jul 2. PMID:17606900 doi:http://dx.doi.org/0704898104
- ↑ Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, Jeong JO, Oh TK, Choi I, Lee JO, Kim MH. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun. 2014 Jan 6;5:2958. doi: 10.1038/ncomms3958. PMID:24389582 doi:http://dx.doi.org/10.1038/ncomms3958
|