4umv
From Proteopedia
CRYSTAL STRUCTURE OF A ZINC-TRANSPORTING PIB-TYPE ATPASE IN THE E2P STATE
Structural highlights
FunctionZNTA_SHISS Confers resistance to zinc, cadmium and lead. Couples the hydrolysis of ATP with the export of zinc, cadmium or lead.[1] Publication Abstract from PubMedZinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 A and 2.7 A resolution, respectively. The structures reveal a similar fold to Cu+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2.Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn2+ release as a built-in counter ion, as has been proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+, K+-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine. Structure and mechanism of Zn-transporting P-type ATPases.,Wang K, Sitsel O, Meloni G, Autzen HE, Andersson M, Klymchuk T, Nielsen AM, Rees DC, Nissen P, Gourdon P Nature. 2014 Aug 17. doi: 10.1038/nature13618. PMID:25132545[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|
Categories: Large Structures | Shigella sonnei | Andersson M | Autzen HE | Gourdon P | Klymchuk T | Meloni G | Nielsen AM | Nissen P | Rees DC | Sitsel O | Wang KT