4wng

From Proteopedia

Jump to: navigation, search

Crystal structure of the TPR domain of LGN in complex with Frmpd4/Preso1 at 2.1 Angstrom resolution

Structural highlights

4wng is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.11Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

GPSM2_HUMAN Autosomal recessive nonsyndromic sensorineural deafness type DFNB;Chudley-McCullough syndrome. Chudley-McCullough syndrome (CMCS) [MIM:604213: An autosomal recessive neurologic disorder characterized by early-onset sensorineural deafness and specific brain anomalies on MRI, including hypoplasia of the corpus callosum, enlarged cysterna magna with mild focal cerebellar dysplasia, and nodular heterotopia. Some patients have hydrocephalus. Psychomotor development is normal. Note=The disease is caused by mutations affecting the gene represented in this entry.[1] [2]

Function

GPSM2_HUMAN Plays an important role in spindle pole orientation. Interacts and contributes to the functional activity of G(i) alpha proteins. Acts to stabilize the apical complex during neuroblast divisions.[3]

Publication Abstract from PubMed

The adaptor protein LGN interacts via the N-terminal domain comprising eight tetratricopeptide-repeat (TPR) motifs with its partner proteins mInsc, NuMA, Frmpd1 and Frmpd4 in a mutually exclusive manner. Here, the crystal structure of the LGN TPR domain in complex with human Frmpd4 is described at 1.5 A resolution. In the complex, the LGN-binding region of Frmpd4 (amino-acid residues 990-1011) adopts an extended structure that runs antiparallel to LGN along the concave surface of the superhelix formed by the TPR motifs. Comparison with the previously determined structures of the LGN-Frmpd1, LGN-mInsc and LGN-NuMA complexes reveals that these partner proteins interact with LGN TPR1-6 via a common core binding region with consensus sequence (E/Q)XEX4-5(E/D/Q)X1-2(K/R)X0-1(V/I). In contrast to Frmpd1, Frmpd4 makes additional contacts with LGN via regions N- and C-terminal to the core sequence. The N-terminal extension is replaced by a specific alpha-helix in mInsc, which drastically increases the direct contacts with LGN TPR7/8, consistent with the higher affinity of mInsc for LGN. A crystal structure of Frmpd4-bound LGN in an oxidized form is also reported, although oxidation does not appear to strongly affect the interaction with Frmpd4.

Structural basis for the recognition of the scaffold protein Frmpd4/Preso1 by the TPR domain of the adaptor protein LGN.,Takayanagi H, Yuzawa S, Sumimoto H Acta Crystallogr F Struct Biol Commun. 2015 Feb;71(Pt 2):175-83. doi:, 10.1107/S2053230X14028143. Epub 2015 Jan 28. PMID:25664792[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

References

  1. Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, Abu Rayyan A, Loulus S, Avraham KB, King MC, Kanaan M. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet. 2010 Jul 9;87(1):90-4. doi: 10.1016/j.ajhg.2010.05.010. Epub 2010, Jun 17. PMID:20602914 doi:10.1016/j.ajhg.2010.05.010
  2. Doherty D, Chudley AE, Coghlan G, Ishak GE, Innes AM, Lemire EG, Rogers RC, Mhanni AA, Phelps IG, Jones SJ, Zhan SH, Fejes AP, Shahin H, Kanaan M, Akay H, Tekin M, Triggs-Raine B, Zelinski T. GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am J Hum Genet. 2012 Jun 8;90(6):1088-93. doi: 10.1016/j.ajhg.2012.04.008. Epub, 2012 May 10. PMID:22578326 doi:10.1016/j.ajhg.2012.04.008
  3. Yasumi M, Sakisaka T, Hoshino T, Kimura T, Sakamoto Y, Yamanaka T, Ohno S, Takai Y. Direct binding of Lgl2 to LGN during mitosis and its requirement for normal cell division. J Biol Chem. 2005 Feb 25;280(8):6761-5. Epub 2005 Jan 4. PMID:15632202 doi:C400440200
  4. Takayanagi H, Yuzawa S, Sumimoto H. Structural basis for the recognition of the scaffold protein Frmpd4/Preso1 by the TPR domain of the adaptor protein LGN. Acta Crystallogr F Struct Biol Commun. 2015 Feb;71(Pt 2):175-83. doi:, 10.1107/S2053230X14028143. Epub 2015 Jan 28. PMID:25664792 doi:http://dx.doi.org/10.1107/S2053230X14028143

Contents


PDB ID 4wng

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools