4xmn

From Proteopedia

Jump to: navigation, search

Structure of the yeast coat nucleoporin complex, space group P212121

Structural highlights

4xmn is a 7 chain structure with sequence from Saccharomyces cerevisiae S288C and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 7.6Å
Ligands:MSE
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SEC13_YEAST Functions as a component of the nuclear pore complex (NPC) and the COPII coat. It is one of 5 proteins constituting the COPII coat, which is involved in anterograde (ER to Golgi) double-membrane transport vesicle formation. First the small GTPase SAR1, activated by and binding to the integral ER membrane protein SEC12, exchanges GDP for GTP and recruits the heterodimer SEC23/24, which in turn recruits the heterotetramer SEC13-SEC31. The polymerization of COPII coat complexes then causes physically the deformation (budding) of the membrane, leading to the creation of a transport vesicle. The COPII complex is dissociated upon SAR1-GTP hydrolysis to SAR1-GDP. SEC23 functions as the SAR1 GTPase activating protein, whose activity is stimulated in the presence of SEC13/31. SEC13 is directly or indirectly required for normal ER membrane and nuclear envelope morphology. It also functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. SEC13 is required for efficient mRNA export from the nucleus to the cytoplasm and for correct nuclear pore biogenesis and distribution. Component of the SEA complex which coats the vacuolar membrane and is involved in intracellular trafficking, autophagy, response to nitrogen starvation, and amino acid biogenesis.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

Publication Abstract from PubMed

The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. Despite half a century of structural characterization, the architecture of the NPC remains unknown. Here we present the crystal structure of a reconstituted ~400-kilodalton coat nucleoporin complex (CNC) from Saccharomyces cerevisiae at a 7.4 angstrom resolution. The crystal structure revealed a curved Y-shaped architecture and the molecular details of the coat nucleoporin interactions forming the central "triskelion" of the Y. A structural comparison of the yeast CNC with an electron microscopy reconstruction of its human counterpart suggested the evolutionary conservation of the elucidated architecture. Moreover, 32 copies of the CNC crystal structure docked readily into a cryoelectron tomographic reconstruction of the fully assembled human NPC, thereby accounting for ~16 megadalton of its mass.

Nuclear pores. Architecture of the nuclear pore complex coat.,Stuwe T, Correia AR, Lin DH, Paduch M, Lu VT, Kossiakoff AA, Hoelz A Science. 2015 Mar 6;347(6226):1148-52. doi: 10.1126/science.aaa4136. Epub 2015, Feb 12. PMID:25745173[20]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell. 1996 Jan 26;84(2):265-75. PMID:8565072
  2. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205-15. PMID:6996832
  3. Novick P, Ferro S, Schekman R. Order of events in the yeast secretory pathway. Cell. 1981 Aug;25(2):461-9. PMID:7026045
  4. Kaiser CA, Schekman R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell. 1990 May 18;61(4):723-33. PMID:2188733
  5. Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A, Schekman R, Orci L. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell. 1995 Dec 29;83(7):1183-96. PMID:8548805
  6. Kuehn MJ, Schekman R, Ljungdahl PO. Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro. J Cell Biol. 1996 Nov;135(3):585-95. PMID:8909535
  7. Roberg KJ, Bickel S, Rowley N, Kaiser CA. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics. 1997 Dec;147(4):1569-84. PMID:9409822
  8. Roberg KJ, Rowley N, Kaiser CA. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell Biol. 1997 Jun 30;137(7):1469-82. PMID:9199164
  9. Sutterlin C, Doering TL, Schimmoller F, Schroder S, Riezman H. Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci. 1997 Nov;110 ( Pt 21):2703-14. PMID:9427388
  10. Campbell JL, Schekman R. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):837-42. PMID:9023343
  11. Matsuoka K, Schekman R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods. 2000 Apr;20(4):417-28. PMID:10720463 doi:10.1006/meth.2000.0955
  12. Siniossoglou S, Lutzmann M, Santos-Rosa H, Leonard K, Mueller S, Aebi U, Hurt E. Structure and assembly of the Nup84p complex. J Cell Biol. 2000 Apr 3;149(1):41-54. PMID:10747086
  13. Lederkremer GZ, Cheng Y, Petre BM, Vogan E, Springer S, Schekman R, Walz T, Kirchhausen T. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10704-9. Epub 2001 Sep 4. PMID:11535824 doi:10.1073/pnas.191359398
  14. Matsuoka K, Schekman R, Orci L, Heuser JE. Surface structure of the COPII-coated vesicle. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13705-9. PMID:11717432 doi:10.1073/pnas.241522198
  15. Ryan KJ, Wente SR. Isolation and characterization of new Saccharomyces cerevisiae mutants perturbed in nuclear pore complex assembly. BMC Genet. 2002 Sep 5;3:17. Epub 2002 Sep 5. PMID:12215173
  16. Lutzmann M, Kunze R, Buerer A, Aebi U, Hurt E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 2002 Feb 1;21(3):387-97. PMID:11823431 doi:10.1093/emboj/21.3.387
  17. Fatal N, Suntio T, Makarow M. Selective protein exit from yeast endoplasmic reticulum in absence of functional COPII coat component Sec13p. Mol Biol Cell. 2002 Dec;13(12):4130-40. PMID:12475940 doi:10.1091/mbc.02-05-0082
  18. Sato K, Nakano A. Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J Biol Chem. 2004 Jan 9;279(2):1330-5. Epub 2003 Nov 19. PMID:14627716 doi:10.1074/jbc.C300457200
  19. Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos DP, Cristea IM, Williams R, Salamero J, Chait BT, Sali A, Field MC, Rout MP, Dargemont C. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol Cell Proteomics. 2011 Jun;10(6):M110.006478. doi: 10.1074/mcp.M110.006478., Epub 2011 Mar 31. PMID:21454883 doi:10.1074/mcp.M110.006478
  20. Stuwe T, Correia AR, Lin DH, Paduch M, Lu VT, Kossiakoff AA, Hoelz A. Nuclear pores. Architecture of the nuclear pore complex coat. Science. 2015 Mar 6;347(6226):1148-52. doi: 10.1126/science.aaa4136. Epub 2015, Feb 12. PMID:25745173 doi:http://dx.doi.org/10.1126/science.aaa4136

Contents


PDB ID 4xmn

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools