4z3c

From Proteopedia

Jump to: navigation, search

Zinc finger region of human TET3 in complex with CpG DNA

Structural highlights

4z3c is a 3 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.57Å
Ligands:UNX, ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TET3_HUMAN Non-specific syndromic intellectual disability. The disease is caused by variants affecting the gene represented in this entry.

Function

TET3_HUMAN Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in epigenetic chromatin reprogramming in the zygote following fertilization (PubMed:31928709). Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation (By similarity). Selectively binds to the promoter region of target genes and contributes to regulate the expression of numerous developmental genes (PubMed:23217707). In zygotes, DNA demethylation occurs selectively in the paternal pronucleus before the first cell division, while the adjacent maternal pronucleus and certain paternally-imprinted loci are protected from this process. Participates in DNA demethylation in the paternal pronucleus by mediating conversion of 5mC into 5hmC, 5fC and 5caC. Does not mediate DNA demethylation of maternal pronucleus because of the presence of DPPA3/PGC7 on maternal chromatin that prevents TET3-binding to chromatin (By similarity). In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT (PubMed:23353889). Binds preferentially to DNA containing cytidine-phosphate-guanosine (CpG) dinucleotides over CpH (H=A, T, and C), hemimethylated-CpG and hemimethylated-hydroxymethyl-CpG (PubMed:29276034).[UniProtKB:Q8BG87][1] [2] [3] [4]

Publication Abstract from PubMed

The CXXC domain, first identified as the reader of unmodified CpG dinucleotide, plays important roles in epigenetic regulation by targeting various activities to CpG islands. Here we systematically measured and compared the DNA-binding selectivities of all known human CXXC domains by different binding assays, and complemented the existing function-based classification of human CXXC domains with a classification based on their DNA selectivities. Through a series of crystal structures of CXXC domains with DNA ligands, we unravel the molecular mechanisms of how these CXXC domains, including single CXXC domains and tandem CXXC-PHD domains, recognize distinct DNA ligands, which further supports our classification of human CXXC domains and also provides insights into selective recruitment of chromatin modifiers to their respective targets via CXXC domains recognizing different genomic DNA sequences. Our study facilitates the understanding of the relationship between the DNA-binding specificities of the CXXC proteins and their biological functions.

DNA Sequence Recognition of Human CXXC Domains and Their Structural Determinants.,Xu C, Liu K, Lei M, Yang A, Li Y, Hughes TR, Min J Structure. 2017 Dec 16. pii: S0969-2126(17)30396-9. doi:, 10.1016/j.str.2017.11.022. PMID:29276034[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C, Hu Y, Hu D, Zhao B, Cerovina T, Diao J, Wu F, He HH, Cui Q, Clark E, Ma C, Barbara A, Veenstra GJ, Xu G, Kaiser UB, Liu XS, Sugrue SP, He X, Min J, Kato Y, Shi YG. Tet3 CXXC Domain and Dioxygenase Activity Cooperatively Regulate Key Genes for Xenopus Eye and Neural Development. Cell. 2012 Dec 7;151(6):1200-13. doi: 10.1016/j.cell.2012.11.014. PMID:23217707 doi:http://dx.doi.org/10.1016/j.cell.2012.11.014
  2. Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013 Mar 6;32(5):645-55. doi: 10.1038/emboj.2012.357. Epub 2013 Jan 25. PMID:23353889 doi:http://dx.doi.org/10.1038/emboj.2012.357
  3. Xu C, Liu K, Lei M, Yang A, Li Y, Hughes TR, Min J. DNA Sequence Recognition of Human CXXC Domains and Their Structural Determinants. Structure. 2017 Dec 16. pii: S0969-2126(17)30396-9. doi:, 10.1016/j.str.2017.11.022. PMID:29276034 doi:http://dx.doi.org/10.1016/j.str.2017.11.022
  4. Beck DB, Petracovici A, He C, Moore HW, Louie RJ, Ansar M, Douzgou S, Sithambaram S, Cottrell T, Santos-Cortez RLP, Prijoles EJ, Bend R, Keren B, Mignot C, Nougues MC, Õunap K, Reimand T, Pajusalu S, Zahid M, Saqib MAN, Buratti J, Seaby EG, McWalter K, Telegrafi A, Baldridge D, Shinawi M, Leal SM, Schaefer GB, Stevenson RE, Banka S, Bonasio R, Fahrner JA. Delineation of a Human Mendelian Disorder of the DNA Demethylation Machinery: TET3 Deficiency. Am J Hum Genet. 2020 Feb 6;106(2):234-245. PMID:31928709 doi:10.1016/j.ajhg.2019.12.007
  5. Xu C, Liu K, Lei M, Yang A, Li Y, Hughes TR, Min J. DNA Sequence Recognition of Human CXXC Domains and Their Structural Determinants. Structure. 2017 Dec 16. pii: S0969-2126(17)30396-9. doi:, 10.1016/j.str.2017.11.022. PMID:29276034 doi:http://dx.doi.org/10.1016/j.str.2017.11.022

Contents


PDB ID 4z3c

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools