5n7m
From Proteopedia
Protruding domain of GI.1 norovirus in complex with 2-fucosyllactose (2FL)
Structural highlights
FunctionCAPSD_NVN68 Capsid protein self assembles to form an icosahedral capsid with a T=3 symmetry, about 38 nm in diameter, and consisting of 180 capsid proteins. A smaller form of capsid with a diameter of 23 nm might be capsid proteins assembled as icosahedron with T=1 symmetry. The capsid encapsulate the genomic RNA and VP2 proteins. Attaches virion to target cells by binding histo-blood group antigens present on gastroduodenal epithelial cells.[1] Soluble capsid protein may play a role in viral immunoevasion.[2] Publication Abstract from PubMedHuman noroviruses are the leading cause of outbreaks of acute gastroenteritis. Norovirus interactions with histo-blood group antigens (HBGAs) are known to be important for an infection. In this study, we identified the HBGA binding pocket for an emerging GII genotype 17 (GII.17) variant using X-ray crystallography. The GII.17 variant bound the HBGA with an equivalent set of residues as the leading pandemic GII.4 variants. These structural data highlights the conserved nature of HBGA binding site between prevalent GII noroviruses. Noroviruses also interact with human milk oligosaccharides (HMOs), which mimic HBGAs and may function as receptor decoys. We previously showed that HMOs inhibited the binding of rarely detected GII.10 norovirus to HBGAs. We now found that an HMO, 2'-fucosyllactose (2'FL), additionally blocked both the GI.1 and GII.17 noroviruses from binding to HBGAs. Together, these findings provide evidence that 2'FL might function as a broadly reactive antiviral against multiple norovirus genogroups. Human norovirus inhibition by a human milk oligosaccharide.,Koromyslova A, Tripathi S, Morozov V, Schroten H, Hansman GS Virology. 2017 May 12;508:81-89. doi: 10.1016/j.virol.2017.04.032. PMID:28505592[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|