6i5g
From Proteopedia
X-ray structure of human soluble Epoxide Hydrolase C-terminal Domain (hsEH CTD)in complex with 15d-PGJ2
Structural highlights
FunctionHYES_HUMAN Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.[1] [2] Publication Abstract from PubMedHuman soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Delta(12,14)-Prostaglandin J2 (15d-PGJ2). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ2 in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors. 15-deoxy-Delta(12,14)-Prostaglandin J2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism.,Abis G, Charles RL, Kopec J, Yue WW, Atkinson RA, Bui TTT, Lynham S, Popova S, Sun YB, Fraternali F, Eaton P, Conte MR Commun Biol. 2019 May 17;2:188. doi: 10.1038/s42003-019-0426-2. eCollection 2019. PMID:31123712[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Abis G | Conte MR | Kopec J | Yue WW