2itk
From Proteopedia
| Line 11: | Line 11: | ||
'''human Pin1 bound to D-PEPTIDE''' | '''human Pin1 bound to D-PEPTIDE''' | ||
| + | |||
| + | ==Overview== | ||
| + | Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I beta-turn conformation for Pin1 prolyl peptide isomerase domain-peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors. | ||
==About this Structure== | ==About this Structure== | ||
2ITK is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ITK OCA]. | 2ITK is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ITK OCA]. | ||
| + | |||
| + | ==Reference== | ||
| + | Structural basis for high-affinity peptide inhibition of human Pin1., Zhang Y, Daum S, Wildemann D, Zhou XZ, Verdecia MA, Bowman ME, Lucke C, Hunter T, Lu KP, Fischer G, Noel JP, ACS Chem Biol. 2007 May 22;2(5):320-8. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17518432 17518432] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Peptidylprolyl isomerase]] | [[Category: Peptidylprolyl isomerase]] | ||
| Line 22: | Line 28: | ||
[[Category: Pin1]] | [[Category: Pin1]] | ||
[[Category: Ww domain]] | [[Category: Ww domain]] | ||
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu May 22 22:25:10 2008'' |
Revision as of 19:25, 22 May 2008
human Pin1 bound to D-PEPTIDE
Overview
Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I beta-turn conformation for Pin1 prolyl peptide isomerase domain-peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors.
About this Structure
2ITK is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
Structural basis for high-affinity peptide inhibition of human Pin1., Zhang Y, Daum S, Wildemann D, Zhou XZ, Verdecia MA, Bowman ME, Lucke C, Hunter T, Lu KP, Fischer G, Noel JP, ACS Chem Biol. 2007 May 22;2(5):320-8. PMID:17518432 Page seeded by OCA on Thu May 22 22:25:10 2008
