1a39

From Proteopedia

Jump to: navigation, search

HUMICOLA INSOLENS ENDOCELLULASE EGI S37W, P39W DOUBLE-MUTANT

Structural highlights

1a39 is a 1 chain structure with sequence from Humicola insolens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:NAG, PCA
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GUN1_HUMIN The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Family 7 of the glycosyl hydrolases contains both endoglucanases and cellobiohydrolases. In addition to their different catalytic activities on crystalline substrates, the cellobiohydrolases differ from the endoglucanases in their activity on longer soluble substrates, indicative of a greater number of subsites on the enzyme. A double mutant (S37W, P39W) of the Humicola insolens endoglucanase I (EG I) has been constructed in order to mimic aspects of the subsite structure of the corresponding family 7 cellobiohydrolase, cellobiohydrolase-I (CBH I). The 3-D crystal structure of the double mutant has been solved and refined to a crystallographic R-factor of 0.17 at a resolution of 2.2 A (1 A = 0.1 nm). The two mutant tryptophans are clearly visible in the electron density and are in the same orientation as those found in the substrate binding groove of CBH I. In addition to the substitutions, the C-terminal amino acids (399QELQ), disordered in the native enzyme structure, are clearly visible and there are a small number of minor loop movements associated with differences in crystal packing. Kinetic determinations show that the S37W, P39W mutant EG I has almost identical activity, compared to native EG I, on small soluble cellodextrins. On phosphoric acid swollen cellulose there is a small (30%), but significant, decrease in the apparent KM indicating that the double mutant may indeed exhibit stronger binding to longer polymeric substrates.

Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites.,Davies GJ, Ducros V, Lewis RJ, Borchert TV, Schulein M J Biotechnol. 1997 Sep 16;57(1-3):91-100. PMID:9335168[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Davies GJ, Ducros V, Lewis RJ, Borchert TV, Schulein M. Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites. J Biotechnol. 1997 Sep 16;57(1-3):91-100. PMID:9335168

Contents


PDB ID 1a39

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools