Structural highlights
Function
HIRV1_HIRME Hirudin is a potent thrombin-specific protease inhibitor. It forms a stable non-covalent complex with alpha-thrombin, thereby abolishing its ability to cleave fibrinogen.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Kinetics, thermodynamics and structural aspects of human alpha-thrombin (thrombin) inhibition by newly synthesized low molecular weight derivatives of alpha-azalysine have been investigated. The thrombin catalyzed hydrolysis of N-ethoxycarbonyl-D-Phe-Pro-alpha-azaLys p-nitrophenyl ester (Eoc-D-Phe-Pro-azaLys-ONp) and N-carbobenzoxy-Pro-alpha-azaLys p-nitrophenyl ester (Cbz-Pro-azaLys-ONp) was investigated at pH 6.2 and 21.0 degrees C, and analyzed in parallel with that of N-alpha-(N,N-dimethylcarbamoyl)-alpha-azalysine p-nitrophenyl ester (Dmc-azaLys-ONp). Decarboxylation following the enzymatic hydrolysis of these p-nitrophenyl esters gave the corresponding 1-peptidyl-2(4-aminobutyl) hydrazines (peptidyl-Abh) showing properties of thrombin competitive inhibitors. Therefore, thermodynamics for the reversible binding of D-Phe-Pro-Abh, Cbz-Pro-Abh and Dmc-Abh to thrombin was examined. These results are consistent with the minimum four-step catalytic mechanism for product inhibition of serine proteinases. Eoc-D-Phe-Pro-azaLys-ONp and Eoc-D-Phe-Pro-Abh display a sub-micromolar affinity for thrombin together with a high selectivity versus homologous plasmatic and pancreatic serine proteinases acting on cationic substrates. The three-dimensional structures of the reversible non-covalent thrombin:Eoc-D-Phe-Pro-Abh and thrombin:Cbz-Pro-Abh complexes have been determined by X-ray crystallography at 2.0 A resolution (R-factor = 0.169 and 0.179, respectively), and analyzed in parallel with that of the thrombin:Dmc-azaLys acyl-enzyme adduct. Both Eoc-D-Phe-Pro-Abh and Cbz-Pro-Abh competitive inhibitors are accommodated in the thrombin active center, spanning the region between the aryl binding site and the S1 primary specificity subsite.
Human alpha-thrombin inhibition by the highly selective compounds N-ethoxycarbonyl-D-Phe-Pro-alpha-azaLys p-nitrophenyl ester and N-carbobenzoxy-Pro-alpha-azaLys p-nitrophenyl ester: a kinetic, thermodynamic and X-ray crystallographic study.,De Simone G, Balliano G, Milla P, Gallina C, Giordano C, Tarricone C, Rizzi M, Bolognesi M, Ascenzi P J Mol Biol. 1997 Jun 20;269(4):558-69. PMID:9217260[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Song X, Mo W, Liu X, Zhu L, Yan X, Song H, Dai L. The NMR solution structure of recombinant RGD-hirudin. Biochem Biophys Res Commun. 2007 Aug 17;360(1):103-8. Epub 2007 Jun 13. PMID:17585879 doi:10.1016/j.bbrc.2007.06.014
- ↑ De Simone G, Balliano G, Milla P, Gallina C, Giordano C, Tarricone C, Rizzi M, Bolognesi M, Ascenzi P. Human alpha-thrombin inhibition by the highly selective compounds N-ethoxycarbonyl-D-Phe-Pro-alpha-azaLys p-nitrophenyl ester and N-carbobenzoxy-Pro-alpha-azaLys p-nitrophenyl ester: a kinetic, thermodynamic and X-ray crystallographic study. J Mol Biol. 1997 Jun 20;269(4):558-69. PMID:9217260 doi:10.1006/jmbi.1997.1037