1bzq
From Proteopedia
COMPLEX OF A DROMEDARY SINGLE-DOMAIN VHH ANTIBODY FRAGMENT WITH RNASE A
Structural highlights
FunctionRNAS1_BOVIN Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Camelid serum contains a large fraction of functional heavy-chain antibodies - homodimers of heavy chains without light chains. The variable domains of these heavy-chain antibodies (VHH) have a long complementarity determining region 3 (CDR3) loop that compensates for the absence of the antigen-binding loops of the variable light chains (VL). In the case of the VHH fragment cAb-Lys3, part of the 24 amino acid long CDR3 loop protrudes from the antigen-binding surface and inserts into the active-site cleft of its antigen, rendering cAb-Lys3 a competitive enzyme inhibitor. RESULTS: A dromedary VHH with specificity for bovine RNase A, cAb-RN05, has a short CDR3 loop of 12 amino acids and is not a competitive enzyme inhibitor. The structure of the cAb-RN05-RNase A complex has been solved at 2.8 A. The VHH scaffold architecture is close to that of a human VH (variable heavy chain). The structure of the antigen-binding hypervariable 1 loop (H1) of both cAb-RN05 and cAb-Lys3 differ from the known canonical structures; in addition these H1 loops resemble each other. The CDR3 provides an antigen-binding surface and shields the face of the domain that interacts with VL in conventional antibodies. CONCLUSIONS: VHHs adopt the common immunoglobulin fold of variable domains, but the antigen-binding loops deviate from the predicted canonical structure. We define a new canonical structure for the H1 loop of immunoglobulins, with cAb-RN05 and cAb-Lys3 as reference structures. This new loop structure might also occur in human or mouse VH domains. Surprisingly, only two loops are involved in antigen recognition; the CDR2 does not participate. Nevertheless, the antigen binding occurs with nanomolar affinities because of a preferential usage of mainchain atoms for antigen interaction. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops.,Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S, Wyns L Structure. 1999 Apr 15;7(4):361-70. PMID:10196124[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|