Structural highlights
Function
PPA_ECOLI
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Phytases catalyze the hydrolysis of phytate and are able to improve the nutritional quality of phytate-rich diets. Escherichia coli phytase, a member of the histidine acid phosphatase family has the highest specific activity of all phytases characterized. The crystal structure of E. coli phytase has been determined by a two-wavelength anomalous diffraction method using the exceptionally strong anomalous scattering of tungsten. Despite a lack of sequence similarity, the structure closely resembles the overall fold of other histidine acid phosphatases. The structure of E. coli phytase in complex with phytate, the preferred substrate, reveals the binding mode and substrate recognition. The binding is also accompanied by conformational changes which suggest that substrate binding enhances catalysis by increasing the acidity of the general acid.
Crystal structures of Escherichia coli phytase and its complex with phytate.,Lim D, Golovan S, Forsberg CW, Jia Z Nat Struct Biol. 2000 Feb;7(2):108-13. PMID:10655611[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lim D, Golovan S, Forsberg CW, Jia Z. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol. 2000 Feb;7(2):108-13. PMID:10655611 doi:http://dx.doi.org/10.1038/72371