1dtu

From Proteopedia

Jump to: navigation, search

BACILLUS CIRCULANS STRAIN 251 CYCLODEXTRIN GLYCOSYLTRANSFERASE: A MUTANT Y89D/S146P COMPLEXED TO AN HEXASACCHARIDE INHIBITOR

Structural highlights

1dtu is a 1 chain structure with sequence from Niallia circulans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:ADH, BGC, CA, G6D, GLC, PRD_900001, PRD_900009
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CDGT2_NIACI

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Cyclodextrin glycosyltransferases (CGTase) (EC 2.4.1.19) are extracellular bacterial enzymes that generate cyclodextrins from starch. All known CGTases produce mixtures of alpha, beta, and gamma-cyclodextrins. A maltononaose inhibitor bound to the active site of the CGTase from Bacillus circulans strain 251 revealed sugar binding subsites, distant from the catalytic residues, which have been proposed to be involved in the cyclodextrin size specificity of these enzymes. To probe the importance of these distant substrate binding subsites for the alpha, beta, and gamma-cyclodextrin product ratios of the various CGTases, we have constructed three single and one double mutant, Y89G, Y89D, S146P and Y89D/S146P, using site-directed mutagenesis. The mutations affected the cyclization, coupling; disproportionation and hydrolyzing reactions of the enzyme. The double mutant Y89D/S146P showed a twofold increase in the production of alpha-cyclodextrin from starch. This mutant protein was crystallized and its X-ray structure, in a complex with a maltohexaose inhibitor, was determined at 2.4 A resolution. The bound maltohexaose molecule displayed a binding different from the maltononaose inhibitor, allowing rationalization of the observed change in product specificity. Hydrogen bonds (S146) and hydrophobic contacts (Y89) appear to contribute strongly to the size of cyclodextrin products formed and thus to CGTase product specificity. Changes in sugar binding subsites -3 and -7 thus result in mutant proteins with changed cyclodextrin production specificity.

Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production.,van der Veen BA, Uitdehaag JC, Penninga D, van Alebeek GJ, Smith LM, Dijkstra BW, Dijkhuizen L J Mol Biol. 2000 Mar 3;296(4):1027-38. PMID:10686101[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. van der Veen BA, Uitdehaag JC, Penninga D, van Alebeek GJ, Smith LM, Dijkstra BW, Dijkhuizen L. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production. J Mol Biol. 2000 Mar 3;296(4):1027-38. PMID:10686101 doi:10.1006/jmbi.2000.3528

Contents


PDB ID 1dtu

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools