1du1

From Proteopedia

Jump to: navigation, search

PEPTIDE FRAGMENT THR671-LEU690 OF THE RABBIT SKELETAL DIHYDROPYRIDINE RECEPTOR

Structural highlights

1du1 is a 1 chain structure with sequence from Oryctolagus cuniculus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CAC1S_RABIT Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1S gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle.

Publication Abstract from PubMed

The solution structures of three related peptides (A1, A2, and A9) corresponding to the Thr(671)-Leu(690) region of the skeletal muscle dihydropyridine receptor II-III loop have been investigated using nuclear magnetic resonance spectroscopy. Peptide A1, the native sequence, is less effective in activating ryanodine receptor calcium release channels than A2 (Ser(687) to Ala substitution). Peptide A9, Arg(681)-Ser(687), does not activate ryanodine receptors. A1 and A2 are helical from their N terminus to Lys(685) but are generally unstructured from Lys(685) to the C terminus. The basic residues Arg(681)-Lys(685), essential for A1 activation of ryanodine receptors, are located at the C-terminal end of the alpha-helix. Peptide A9 was found to be unstructured. Differences between A1 and A2 were observed in the C-terminal end of the helix (residues 681-685), which was less ordered in A1, and in the C-terminal region of the peptide, which exhibited greater flexibility in A1. Predicted low energy models suggest that an electrostatic interaction between the hydroxyl oxygen of Ser(687) and the guanidino moiety of Arg(683) is lost with the Ser(687)Ala substitution. The results show that the more structured peptides are more effective in activating ryanodine receptors.

A structural requirement for activation of skeletal ryanodine receptors by peptides of the dihydropyridine receptor II-III loop.,Casarotto MG, Gibson F, Pace SM, Curtis SM, Mulcair M, Dulhunty AF J Biol Chem. 2000 Apr 21;275(16):11631-7. PMID:10766780[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
9 reviews cite this structure
Quintero-Hernández et al. (2013)
No citations found

References

  1. Casarotto MG, Gibson F, Pace SM, Curtis SM, Mulcair M, Dulhunty AF. A structural requirement for activation of skeletal ryanodine receptors by peptides of the dihydropyridine receptor II-III loop. J Biol Chem. 2000 Apr 21;275(16):11631-7. PMID:10766780

Contents


PDB ID 1du1

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools