1fqg
From Proteopedia
MOLECULAR STRUCTURE OF THE ACYL-ENZYME INTERMEDIATE IN TEM-1 BETA-LACTAMASE
Structural highlights
FunctionBLAT_ECOLX TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe X-ray crystal structure of the molecular complex of penicillin G with a deacylation-defective mutant of the RTEM-1 beta-lactamase from Escherichia coli shows how these antibiotics are recognized and destroyed. Penicillin G is covalently bound to Ser 70 0 gamma as an acyl-enzyme intermediate. The deduced catalytic mechanism uses Ser 70 0 gamma as the attacking nucleophile during acylation. Lys 73 N zeta acts as a general base in abstracting a proton from Ser 70 and transferring it to the thiazolidine ring nitrogen atom via Ser 130 0 gamma. Deacylation is accomplished by nucleophilic attack on the penicilloyl carbonyl carbon by a water molecule assisted by the general base, Glu 166. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution.,Strynadka NC, Adachi H, Jensen SE, Johns K, Sielecki A, Betzel C, Sutoh K, James MN Nature. 1992 Oct 22;359(6397):700-5. PMID:1436034[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|