1fub
From Proteopedia
FIRST PROTEIN STRUCTURE DETERMINED FROM X-RAY POWDER DIFFRACTION DATA
Structural highlights
DiseaseINS_HUMAN Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:176730.[1] [2] [3] [4] Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:125852. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.[5] Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:606176. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.[6] [7] Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:613370. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.[8] [9] [10] FunctionINS_HUMAN Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedX-ray diffraction analysis of protein structure is often limited by the availability of suitable crystals. However, the absence of single crystals need not present an insurmountable obstacle in protein crystallography any more than it does in materials science, where powder diffraction techniques have developed to the point where complex oxide, zeolite and small organic molecular structures can often be solved from powder data alone. Here, that fact is demonstrated with the structure solution and refinement of a new variant of the T(3)R(3) Zn-human insulin complex produced by mechanical grinding of a polycrystalline sample. High-resolution synchrotron X-ray powder diffraction data were used to solve this crystal structure by molecular replacement adapted for Rietveld refinement. A complete Rietveld refinement of the 1630-atom protein was achieved by combining 7981 stereochemical restraints with a 4800-step (d(min) = 3.24 A) powder diffraction pattern and yielded the residuals R(wp) = 3.73%, R(p) = 2.84%, R(F)(2) = 8.25%. It was determined that the grinding-induced phase change is accompanied by 9.5 and 17.2 degrees rotations of the two T(3)R(3) complexes that comprise the crystal structure. The material reverts over 2-3 d to recover the original T(3)R(3) crystal structure. A Rietveld refinement of this 815-atom protein by combining 3886 stereochemical restraints with a 6000-step (d(min) = 3.06 A) powder diffraction pattern yielded the residuals R(wp) = 3.46%, R(p) = 2.64%, R(F)(2) = 7.10%. The demonstrated ability to solve and refine a protein crystal structure from powder diffraction data suggests that this approach can be employed, for example, to examine structural changes in a series of protein derivatives in which the structure of one member is known from a single-crystal study. The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding.,Von Dreele RB, Stephens PW, Smith GD, Blessing RH Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1549-53. PMID:11092920[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|