1gc5

From Proteopedia

Jump to: navigation, search

CRYSTAL STRUCTURE OF A NOVEL ADP-DEPENDENT GLUCOKINASE FROM THERMOCOCCUS LITORALIS

Structural highlights

1gc5 is a 1 chain structure with sequence from Thermococcus litoralis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:ADP
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GLKA_THELN Catalyzes the phosphorylation of D-glucose to D-glucose 6-phosphate using ADP as the phosphate donor. Can also use CDP as the phosphoryl group donor and D-glucosamine and D-1,5-anhydroglucitol as the phosphoryl group acceptor.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: ATP is the most common phosphoryl group donor for kinases. However, certain hyperthermophilic archaea such as Thermococcus litoralis and Pyrococcus furiosus utilize unusual ADP-dependent glucokinases and phosphofructokinases in their glycolytic pathways. These ADP-dependent kinases are homologous to each other but show no sequence similarity to any of the hitherto known ATP-dependent enzymes. RESULTS: We solved the crystal structure at 2.3 A resolution of an ADP-dependent glucokinase from T. litoralis (tlGK) complexed with ADP. The overall structure can be divided into large and small alpha/beta domains, and the ADP molecule is buried in a shallow pocket in the large domain. Unexpectedly, the structure was similar to those of two ATP-dependent kinases, ribokinase and adenosine kinase. Comparison based on three-dimensional structure revealed that several motifs important both in structure and function are conserved, and the recognition of the alpha- and beta-phosphate of the ADP in the tlGK was almost identical with the recognition of the beta- and gamma-phosphate of ATP in these ATP-dependent kinases. CONCLUSIONS: Noticeable points of our study are the first structure of ADP-dependent kinase, the structural similarity to members of the ATP-dependent ribokinase family, its rare nucleotide specificity caused by a shift in nucleotide binding position by one phosphate unit, and identification of the residues that discriminate ADP- and ATP-dependence. The strict conservation of the binding site for the terminal and adjacent phosphate moieties suggests a common ancestral origin of both the ATP- and ADP-dependent kinases.

Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon.,Ito S, Fushinobu S, Yoshioka I, Koga S, Matsuzawa H, Wakagi T Structure. 2001 Mar 7;9(3):205-14. PMID:11286887[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Koga S, Yoshioka I, Sakuraba H, Takahashi M, Sakasegawa S, Shimizu S, Ohshima T. Biochemical characterization, cloning, and sequencing of ADP-dependent (AMP-forming) glucokinase from two hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. J Biochem. 2000 Dec;128(6):1079-85. PMID:11098152
  2. Ito S, Fushinobu S, Yoshioka I, Koga S, Matsuzawa H, Wakagi T. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon. Structure. 2001 Mar 7;9(3):205-14. PMID:11286887

Contents


PDB ID 1gc5

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools