1geh
From Proteopedia
CRYSTAL STRUCTURE OF ARCHAEAL RUBISCO (RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE)
Structural highlights
FunctionRBL_THEKO Catalyzes the addition of molecular CO(2) and H(2)O to ribulose 1,5-bisphosphate (RuBP), generating two molecules of 3-phosphoglycerate (3-PGA). Functions in an archaeal AMP degradation pathway, together with AMP phosphorylase and R15P isomerase.[HAMAP-Rule:MF_01133][1] [2] [3] Publication Abstract from PubMedBACKGROUND: Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme of the Calvin-Benson cycle and catalyzes the primary reaction of CO2 fixation in plants, algae, and bacteria. Rubiscos have been so far classified into two types. Type I is composed of eight large subunits (L subunits) and eight small subunits (S subunits) with tetragonal symmetry (L8S8), but type II is usually composed only of two L subunits (L2). Recently, some genuinely active Rubiscos of unknown physiological function have been reported from archaea. RESULTS: The crystal structure of Rubisco from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (Tk-Rubisco) was determined at 2.8 A resolution. The enzyme is composed only of L subunits and showed a novel (L2)5 decameric structure. Compared to previously known type I enzymes, each L2 dimer is inclined approximately 16 degrees to form a toroid-shaped decamer with its unique L2-L2 interfaces. Differential scanning calorimetry (DSC), circular dichroism (CD), and gel permeation chromatography (GPC) showed that Tk-Rubisco maintains its secondary structure and decameric assembly even at high temperatures. CONCLUSIONS: The present study provides the first structure of an archaeal Rubisco, an unprecedented (L2)5 decamer. Biochemical studies indicate that Tk-Rubisco maintains its decameric structure at high temperatures. The structure is distinct from type I and type II Rubiscos and strongly supports that Tk-Rubisco should be classified as a novel type III Rubisco. Crystal structure of a novel-type archaeal rubisco with pentagonal symmetry.,Kitano K, Maeda N, Fukui T, Atomi H, Imanaka T, Miki K Structure. 2001 Jun;9(6):473-81. PMID:11435112[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|