1gk8
From Proteopedia
Rubisco from Chlamydomonas reinhardtii
Structural highlights
FunctionRBL_CHLRE RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site.[HAMAP-Rule:MF_01338] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) from the unicellular green alga Chlamydomonas reinhardtii has been determined to 1.4 A resolution. Overall, the structure shows high similarity to the previously determined structures of L8S8 Rubisco enzymes. The largest difference is found in the loop between beta strands A and B of the small subunit (betaA-betaB loop), which is longer by six amino acid residues than the corresponding region in Rubisco from Spinacia. Mutations of residues in the betaA-betaB loop have been shown to affect holoenzyme stability and catalytic properties. The information contained in the Chlamydomonas structure enables a more reliable analysis of the effect of these mutations. No electron density was observed for the last 13 residues of the small subunit, which are assumed to be disordered in the crystal. Because of the high resolution of the data, some posttranslational modifications are unambiguously apparent in the structure. These include cysteine and N-terminal methylations and proline 4-hydroxylations. First crystal structure of Rubisco from a green alga, Chlamydomonas reinhardtii.,Taylor TC, Backlund A, Bjorhall K, Spreitzer RJ, Andersson I J Biol Chem. 2001 Dec 21;276(51):48159-64. Epub 2001 Oct 18. PMID:11641402[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|