1h25
From Proteopedia
CDK2/Cyclin A in complex with an 11-residue recruitment peptide from retinoblastoma-associated protein
Structural highlights
Disease[RB_HUMAN] Defects in RB1 are the cause of childhood cancer retinoblastoma (RB) [MIM:180200]. RB is a congenital malignant tumor that arises from the nuclear layers of the retina. It occurs in about 1:20'000 live births and represents about 2% of childhood malignancies. It is bilateral in about 30% of cases. Although most RB appear sporadically, about 20% are transmitted as an autosomal dominant trait with incomplete penetrance. The diagnosis is usually made before the age of 2 years when strabismus or a gray to yellow reflex from pupil ('cat eye') is investigated.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Defects in RB1 are a cause of susceptibility to bladder cancer (BLC) [MIM:109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Defects in RB1 are a cause of osteogenic sarcoma (OSRC) [MIM:259500]. Function[RB_HUMAN] Key regulator of entry into cell division that acts as a tumor suppressor. Promotes G0-G1 transition when phosphorylated by CDK3/cyclin-C. Acts as a transcription repressor of E2F1 target genes. The underphosphorylated, active form of RB1 interacts with E2F1 and represses its transcription activity, leading to cell cycle arrest. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, SUV420H1 and SUV420H2, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity.[14] [CCNA2_HUMAN] Essential for the control of the cell cycle at the G1/S (start) and the G2/M (mitosis) transitions. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedProgression through S phase of the eukaryotic cell cycle is regulated by the action of the cyclin dependent protein kinase 2 (CDK2) in association with cyclin A. CDK2/cyclin A phosphorylates numerous substrates. Substrate specificity often employs a dual recognition strategy in which the sequence flanking the phospho-acceptor site (Ser.Pro.X.Arg/Lys) is recognized by CDK2, while the cyclin A component of the complex contains a hydrophobic site that binds Arg/Lys.X.Leu ("RXL" or "KXL") substrate recruitment motifs. To determine additional sequence specificity motifs around the RXL sequence, we have performed X-ray crystallographic studies at 2.3 A resolution and isothermal calorimetry measurements on complexes of phospho-CDK2/cyclin A with a recruitment peptide derived from E2F1 and with shorter 11-mer peptides from p53, pRb, p27, E2F1, and p107. The results show that the cyclin recruitment site accommodates a second hydrophobic residue either immediately C-terminal or next adjacent to the leucine of the "RXL" motif and that this site makes important contributions to the recruitment peptide recognition. The arginine of the RXL motif contacts a glutamate, Glu220, on the cyclin. In those substrates that contain a KXL motif, no ionic interactions are observed with the lysine. The sequences N-terminal to the "RXL" motif of the individual peptides show no conservation, but nevertheless make common contacts to the cyclin through main chain interactions. Thus, the recruitment site is able to recognize diverse but conformationally constrained target sequences. The observations have implications for the further identification of physiological substrates of CDK2/cyclin A and the design of specific inhibitors. Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A.,Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble ME, Gamblin SJ, Johnson LN Biochemistry. 2002 Dec 31;41(52):15625-34. PMID:12501191[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human | Large Structures | Brown, N R | Cheng, K Y | Gamblin, S | Gul, S | Johnson, L N | Lowe, E D | Noble, M E.M | Tews, I | Cdk2 | Cell cycle | Cyclin | Peptide specificity | Protein kinase | Recruitment | Transferase