1h4d
From Proteopedia
Biochemical and Structural Analysis of the Molybdenum Cofactor Biosynthesis protein MobA
Structural highlights
FunctionMOBA_ECOLI Transfers a GMP moiety from GTP to Mo-molybdopterin (Mo-MPT) cofactor (Moco or molybdenum cofactor) to form Mo-molybdopterin guanine dinucleotide (Mo-MGD) cofactor. Is also involved in the biosynthesis of the bis-MGD form of the Moco cofactor (Mo-bisMGD) in which the metal is symmetrically ligated by the dithiolene groups of two MGD molecules. Is necessary and sufficient for the in vitro activation of the DMSOR molybdoenzyme that uses the Mo-bisMGD form of molybdenum cofactor, which implies formation and efficient insertion of the cofactor into the enzyme without the need of a chaperone. Is specific for GTP since other nucleotides such as ATP and GMP can not be utilized.[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMolybdopterin guanine dinucleotide (MGD) is the form of the molybdenum cofactor that is required for the activity of most bacterial molybdoenzymes. MGD is synthesized from molybdopterin (MPT) and GTP in a reaction catalyzed by the MobA protein. Here we report that wild type MobA can be copurified along with bound MPT and MGD, demonstrating a tight binding of both its substrate and product. To study structure-function relationships, we have constructed a number of site-specific mutations of the most highly conserved amino acid residues of the MobA protein family. Variant MobA proteins were characterized for their ability to support the synthesis of active molybdenum enzymes, to bind MPT and MGD, to interact with the molybdenum cofactor biosynthesis proteins MobB and MoeA. They were also characterized by x-ray structural analysis. Our results suggest an essential role for glycine 15 of MobA, either for GTP binding and/or catalysis, and an involvement of glycine 82 in the stabilization of the product-bound form of the enzyme. Surprisingly, the individual and double substitution of asparagines 180 and 182 to aspartate did not affect MPT binding, catalysis, and product stabilization. Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA.,Guse A, Stevenson CE, Kuper J, Buchanan G, Schwarz G, Giordano G, Magalon A, Mendel RR, Lawson DM, Palmer T J Biol Chem. 2003 Jul 11;278(28):25302-7. Epub 2003 Apr 28. PMID:12719427[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Escherichia coli | Large Structures | Buchanan G | Guse A | Kuper J | Lawson DM | Mendel RR | Palmer T | Schwarz G | Stevenson CEM