1ip4

From Proteopedia

Jump to: navigation, search

G72A HUMAN LYSOZYME

Structural highlights

1ip4 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:NA
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

LYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]

Function

LYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Our previous study of six non-Gly to Gly/Ala mutant human lysozymes in a left-handed helical region showed that only one non-Gly residue at a rigid site had unfavorable strain energy as compared with Gly at the same position (Takano et al., Proteins 2001; 44:233-243). To further examine the role of left-handed residues in the conformational stability of a protein, we constructed ten Gly to Ala mutant human lysozymes. Most Gly residues in human lysozyme are located in the left-handed helix region. The thermodynamic parameters for denaturation and crystal structures were determined by differential scanning calorimetry and X-ray analysis, respectively. The difference in denaturation Gibbs energy (DeltaDeltaG) for the ten Gly to Ala mutants ranged from + 1.9 to -7.5 kJ/mol, indicating that the effect of the mutation depends on the environment of the residue. We confirm that Gly in a left-handed region is more favorable at rigid sites than non-Gly, but there is little difference in energetic cost between Gly and non-Gly at flexible sites. The present results indicate that dihedral angles in the backbone conformation and also the flexibility at the position should be considered for analyses of protein stability, and protein structural determination, prediction, and design.

Role of amino acid residues in left-handed helical conformation for the conformational stability of a protein.,Takano K, Yamagata Y, Yutani K Proteins. 2001 Nov 15;45(3):274-80. PMID:11599030[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
1 reviews cite this structure
Li et al. (2005)
No citations found

See Also

References

  1. Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al.. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553-7. PMID:8464497 doi:http://dx.doi.org/10.1038/362553a0
  2. Takano K, Yamagata Y, Yutani K. Role of amino acid residues in left-handed helical conformation for the conformational stability of a protein. Proteins. 2001 Nov 15;45(3):274-80. PMID:11599030

Contents


PDB ID 1ip4

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools