1iyi

From Proteopedia

Jump to: navigation, search

Crystal structure of hematopoietic prostaglandin D synthase

Structural highlights

1iyi is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:CA, GSH
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HPGDS_HUMAN Bifunctional enzyme which catalyzes both the conversion of PGH2 to PGD2, a prostaglandin involved in smooth muscle contraction/relaxation and a potent inhibitor of platelet aggregation, and the conjugation of glutathione with a wide range of aryl halides and organic isothiocyanates. Also exhibits low glutathione-peroxidase activity towards cumene hydroperoxide.[1] [2] [3] [4] [5] [6] [7] [8]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Here we report the crystal structures of human hematopoietic prostaglandin (PG) D synthase bound to glutathione (GSH) and Ca2+ or Mg2+. Using GSH as a cofactor, prostaglandin D synthase catalyzes the isomerization of PGH2 to PGD2, a mediator for allergy response. The enzyme is a homodimer, and Ca2+ or Mg2+ increases its activity to approximately 150% of the basal level, with half maximum effective concentrations of 400 microM for Ca2+ and 50 microM for Mg2+. In the Mg2+-bound form, the ion is octahedrally coordinated by six water molecules at the dimer interface. The water molecules are surrounded by pairs of Asp93, Asp96 and Asp97 from each subunit. Ca(2+) is coordinated by five water molecules and an Asp96 from one subunit. The Asp96 residue in the Ca2+-bound form makes hydrogen bonds with two guanidium nitrogen atoms of Arg14 in the GSH-binding pocket. Mg2+ alters the coordinating water structure and reduces one hydrogen bond between Asp96 and Arg14, thereby changing the interaction between Arg14 and GSH. This effect explains a four-fold reduction in the K(m) of the enzyme for GSH. The structure provides insights into how Ca2+ or Mg2+ binding activates human hematopoietic PGD synthase.

Mechanism of metal activation of human hematopoietic prostaglandin D synthase.,Inoue T, Irikura D, Okazaki N, Kinugasa S, Matsumura H, Uodome N, Yamamoto M, Kumasaka T, Miyano M, Kai Y, Urade Y Nat Struct Biol. 2003 Apr;10(4):291-6. PMID:12627223[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Kanaoka Y, Fujimori K, Kikuno R, Sakaguchi Y, Urade Y, Hayaishi O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur J Biochem. 2000 Jun;267(11):3315-22. PMID:10824118
  2. Jowsey IR, Thomson AM, Flanagan JU, Murdock PR, Moore GB, Meyer DJ, Murphy GJ, Smith SA, Hayes JD. Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. Biochem J. 2001 Nov 1;359(Pt 3):507-16. PMID:11672424
  3. Suzuki T, Watanabe K, Kanaoka Y, Sato T, Hayaishi O. Induction of hematopoietic prostaglandin D synthase in human megakaryocytic cells by phorbol ester. Biochem Biophys Res Commun. 1997 Dec 18;241(2):288-93. PMID:9425264 doi:http://dx.doi.org/10.1006/bbrc.1997.7803
  4. Mahmud I, Ueda N, Yamaguchi H, Yamashita R, Yamamoto S, Kanaoka Y, Urade Y, Hayaishi O. Prostaglandin D synthase in human megakaryoblastic cells. J Biol Chem. 1997 Nov 7;272(45):28263-6. PMID:9353279
  5. Inoue T, Irikura D, Okazaki N, Kinugasa S, Matsumura H, Uodome N, Yamamoto M, Kumasaka T, Miyano M, Kai Y, Urade Y. Mechanism of metal activation of human hematopoietic prostaglandin D synthase. Nat Struct Biol. 2003 Apr;10(4):291-6. PMID:12627223 doi:10.1038/nsb907
  6. Inoue T, Okano Y, Kado Y, Aritake K, Irikura D, Uodome N, Okazaki N, Kinugasa S, Shishitani H, Matsumura H, Kai Y, Urade Y. First determination of the inhibitor complex structure of human hematopoietic prostaglandin D synthase. J Biochem. 2004 Mar;135(3):279-83. PMID:15113825
  7. Aritake K, Kado Y, Inoue T, Miyano M, Urade Y. Structural and functional characterization of HQL-79, an orally selective inhibitor of human hematopoietic prostaglandin D synthase. J Biol Chem. 2006 Jun 2;281(22):15277-86. Epub 2006 Mar 17. PMID:16547010 doi:10.1074/jbc.M506431200
  8. Weber JE, Oakley AJ, Christ AN, Clark AG, Hayes JD, Hall R, Hume DA, Board PG, Smythe ML, Flanagan JU. Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D2 synthase. Eur J Med Chem. 2010 Feb;45(2):447-54. Epub 2009 Oct 23. PMID:19939518 doi:10.1016/j.ejmech.2009.10.025
  9. Inoue T, Irikura D, Okazaki N, Kinugasa S, Matsumura H, Uodome N, Yamamoto M, Kumasaka T, Miyano M, Kai Y, Urade Y. Mechanism of metal activation of human hematopoietic prostaglandin D synthase. Nat Struct Biol. 2003 Apr;10(4):291-6. PMID:12627223 doi:10.1038/nsb907

Contents


PDB ID 1iyi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools