Structural highlights
Function
ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Measurements of changes in structure and stability caused by 13 different substitutions for threonine 157 in phage T4 lysozyme show that the most stable lysozyme variants contain hydrogen bonds analogous to those in the wild-type enzyme and that structural adjustments allow the protein to be surprisingly tolerant of amino-acid substitutions.
Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme.,Alber T, Sun DP, Wilson K, Wozniak JA, Cook SP, Matthews BW Nature. 1987 Nov 5-11;330(6143):41-6. PMID:3118211[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
- ↑ Alber T, Sun DP, Wilson K, Wozniak JA, Cook SP, Matthews BW. Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature. 1987 Nov 5-11;330(6143):41-6. PMID:3118211 doi:http://dx.doi.org/10.1038/330041a0