1l19
From Proteopedia
ENHANCED PROTEIN THERMOSTABILITY FROM DESIGNED MUTATIONS THAT INTERACT WITH ALPHA-HELIX DIPOLES
Structural highlights
FunctionENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTwo different genetically engineered amino-acid substitutions designed to interact with alpha-helix dipoles in T4 lysozyme are shown to increase the thermal stability of the protein. Crystallographic analyses of the mutant lysozyme structures suggest that the stabilization is due to electrostatic interaction and does not require precise hydrogen bonding between the substituted amino acid and the end of the alpha-helix. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles.,Nicholson H, Becktel WJ, Matthews BW Nature. 1988 Dec 15;336(6200):651-6. PMID:3200317[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|