1mso
From Proteopedia
T6 Human Insulin at 1.0 A Resolution
Structural highlights
DiseaseINS_HUMAN Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:176730.[1] [2] [3] [4] Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:125852. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.[5] Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:606176. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.[6] [7] Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:613370. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.[8] [9] [10] FunctionINS_HUMAN Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structure of T(6) human insulin has been determined at 120 K at a resolution of 1.0 A and refined to a residual of 0.183. As a result of cryofreezing, the first four residues of the B chain in one of the two crystallographically independent AB monomers in the hexameric [Zn(1/3)(AB)(2)Zn(1/3)](3) complex undergo a conformational shift that displaces the C(alpha) atom of PheB1 by 7.86 A relative to the room-temperature structure. A least-squares superposition of all backbone atoms of the room-temperature and low-temperature structures yielded a mean displacement of 0.422 A. Omitting the first four residues of the B chain reduced the mean displacement to 0.272 A. At 120 K, nine residues were found to exhibit two discrete side-chain conformations, but only two of these residues are in common with the seven residues found to have disordered side chains in the room-temperature structure. As a result of freezing, the disorder observed at room temperature in both ArgB22 side chains is eliminated. The close contact between pairs of O( epsilon 2) atoms in GluB13 observed at room temperature is maintained at cryotemperature and suggests that a carboxylate-carboxylic acid centered hydrogen bond exists [-C(=O)-O.H.O-C(=O)-] such that the H atom is equally shared between the two partially charged O atoms. The structure of T6 human insulin at 1.0 A resolution.,Smith GD, Pangborn WA, Blessing RH Acta Crystallogr D Biol Crystallogr. 2003 Mar;59(Pt 3):474-82. Epub 2003, Feb 21. PMID:12595704[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|