1n0j
From Proteopedia
The Structure of Human Mitochondrial MN3+ Superoxide Dismutase Reveals a Novel Tetrameric Interface of Two 4-Helix Bundles
Structural highlights
Disease[SODM_HUMAN] Genetic variation in SOD2 is associated with susceptibility to microvascular complications of diabetes type 6 (MVCD6) [MIM:612634]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Function[SODM_HUMAN] Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe 2.2 A resolution crystal structure of recombinant human manganese superoxide dismutase, a homotetrameric enzyme that protects mitochondria against oxygen-mediated free radical damage, has been determined. Within each subunit, both the N-terminal helical hairpin and C-terminal alpha/beta domains contribute ligands to the catalytic manganese site. Two identical 4-helix bundles, symmetrically assembled from the N-terminal helical hairpins, form novel tetrameric interfaces that stabilize the active sites. Structurally altered polymorphic variants with reduced activity, such as tetrameric interface mutant Ile-58 to Thr, may produce not only an early selective advantage, through enhanced cytotoxicity of tumor necrosis factor for virus-infected cells, but also detrimental effects from increased mitochondrial oxidative damage, contributing to degenerative conditions, including diabetes, aging, and Parkinson's and Alzheimer's diseases. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles.,Borgstahl GE, Parge HE, Hickey MJ, Beyer WF Jr, Hallewell RA, Tainer JA Cell. 1992 Oct 2;71(1):107-18. PMID:1394426[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|