1o4h
From Proteopedia
CRYSTAL STRUCTURE OF SH2 IN COMPLEX WITH RU79072.
Structural highlights
DiseaseSRC_HUMAN Note=SRC kinase activity has been shown to be increased in several tumor tissues and tumor cell lines such as colon carcinoma cells. FunctionSRC_HUMAN Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1. Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors. Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1. Plays a role in EGF-mediated calcium-activated chloride channel activation. Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of ADRBK1, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor. Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus. Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function. Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase. Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation. Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731'. Enhances DDX58/RIG-I-elicited antiviral signaling. Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376'. Phosphorylates BCAR1 at 'Tyr-128'.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedResults from a novel approach which uses protein crystallography for the screening of a low affinity inhibitor fragment library are analyzed by comparing the X-ray structures with bound fragments to the structures with the corresponding full length inhibitors. The screen for new phospho-tyrosine mimics binding to the SH2 domain of (pp60)src was initiated because of the limited cell penetration of phosphates. Fragments in our library typically had between 6 and 30 atoms and included compounds which had either millimolar activity in a Biacore assay or were suggested by the ab initio design program LUDI but had no measurable affinity. All identified fragments were located in the phospho-tyrosine pocket. The most promising fragments were successfully used to replace the phospho-tyrosine and resulted in novel nonpeptidic high affinity inhibitors. The significant diversity of successful fragments is reflected in the high flexibility of the phospho-tyrosine pocket. Comparison of the X-ray structures shows that the presence of the H-bond acceptors and not their relative position within the pharmacophore are essential for fragment binding and/or high affinity binding of full length inhibitors. The X-ray data show that the fragments are recognized by forming a complex H-bond network within the phospho-tyrosine pocket of SH2. No fragment structure was found in which this H-bond network was incomplete, and any uncompensated H-bond within the H-bond network leads to a significant decrease in the affinity of full length inhibitors. No correlation between affinity and fragment binding was found for these polar fragments and hence affinity-based screening would have overlooked some interesting starting points for inhibitor design. In contrast, we were unable to identify electron density for hydrophobic fragments, confirming that hydrophobic interactions are important for inhibitor affinity but of minor importance for ligand recognition. Our results suggest that a screening approach using protein crystallography is particularly useful to identify universal fragments for the conserved hydrophilic recognition sites found in target families such as SH2 domains, phosphatases, kinases, proteases, and esterases. Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors.,Lange G, Lesuisse D, Deprez P, Schoot B, Loenze P, Benard D, Marquette JP, Broto P, Sarubbi E, Mandine E J Med Chem. 2003 Nov 20;46(24):5184-95. PMID:14613321[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|