1ouw
From Proteopedia
Crystal structure of Calystegia sepium agglutinin
Structural highlights
FunctionLECC_CALSE Mannose-binding lectin (PubMed:14561768, PubMed:18266762, PubMed:26971576, PubMed:28973127, PubMed:9111143). Preferentially binds mannose at concentrations ranging between 5 and 25 mM, but binds also glucose. Has a marked preference for methylated sugar derivatives, such as alpha-MeMan and alpha-MeGlc, at concentration down to 5 mM (PubMed:14561768). Binds to N-glycans, but not to glycolipid-type or other type of glycans (PubMed:28973127). Binds N-linked high-mannose-type glycans (PubMed:18266762, PubMed:28973127). Has a preference for smaller (Man(2)-Man(6)) high-mannose-type glycans to larger (Man(7)-Man(9)) ones. Recognizes both alpha1-6 extended and alpha1-3 extended monoantennary glycans. The addition of alpha1-2Man to the Man-alpha1-3Man-beta branch results in a significant loss of affinity, but beta1-2GlcNAc has some affinity. Has less affinity for biantennary glycans (PubMed:18266762). However, affinity is significant for the biantennary complex-type N-glycans with bisecting GlcNAc (PubMed:18266762, PubMed:26971576, PubMed:28973127). No affinity is observed for tri- and tetra-antennary glycans (PubMed:18266762). Binds bisected glycans of the mouse brain. Selectively binds to bisecting N-glycans which are in back-fold conformation, and does not favor a glycan with an extend conformation (PubMed:26971576). Has hemagglutinating activity against rabbit erythrocytes at 0.3 ug/ml and against trypsin-treated human erythrocytes at 5 ug/ml. Has mitogenic activity in murine cells (PubMed:9111143).[1] [2] [3] [4] [5] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe high number of quaternary structures observed for lectins highlights the important role of these oligomeric assemblies during carbohydrate recognition events. Although a large diversity in the mode of association of lectin subunits is frequently observed, the oligomeric assemblies of plant lectins display small variations within a single family. The crystal structure of the mannose-binding jacalin-related lectin from Calystegia sepium (Calsepa) has been determined at 1.37-A resolution. Calsepa exhibits the same beta-prism fold as identified previously for other members of the family, but the shape and the hydrophobic character of its carbohydrate-binding site is unlike that of other members, consistent with surface plasmon resonance analysis showing a preference for methylated sugars. Calsepa reveals a novel dimeric assembly markedly dissimilar to those described earlier for Heltuba and jacalin but mimics the canonical 12-stranded beta-sandwich dimer found in legume lectins. The present structure exemplifies the adaptability of the beta-prism building block in the evolution of plant lectins and highlights the biological role of these quaternary structures for carbohydrate recognition. The crystal structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a beta-prism fold.,Bourne Y, Roig-Zamboni V, Barre A, Peumans WJ, Astoul CH, Van Damme EJ, Rouge P J Biol Chem. 2004 Jan 2;279(1):527-33. Epub 2003 Oct 15. PMID:14561768[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 5 reviews cite this structure No citations found See AlsoReferences
|
|