1qv7

From Proteopedia

Jump to: navigation, search

HORSE LIVER ALCOHOL DEHYDROGENASE HIS51GLN/LYS228ARG MUTANT COMPLEXED WITH NAD+ AND 2,3-DIFLUOROBENZYL ALCOHOL

Structural highlights

1qv7 is a 2 chain structure with sequence from Equus caballus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:DFB, NAD, ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ADH1E_HORSE

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Histidine-51 in horse liver alcohol dehydrogenase (ADH) is part of a hydrogen-bonded system that appears to facilitate deprotonation of the hydroxyl group of water or alcohol ligated to the catalytic zinc. The contribution of His-51 to catalysis was studied by characterizing ADH with His-51 substituted with Gln (H51Q). The steady-state kinetic constants for ethanol oxidation and acetaldehyde reduction at pH 8 are similar for wild-type and H51Q enzymes. In contrast, the H51Q substitution significantly shifts the pH dependencies for steady-state and transient reactions and decreases by 11-fold the rate constant for the transient oxidation of ethanol at pH 8. Modest substrate deuterium isotope effects indicate that hydride transfer only partially limits the transient oxidation and turnover. Transient data show that the H51Q substitution significantly decreases the rate of isomerization of the enzyme-NAD(+) complex and becomes a limiting step for ethanol oxidation. Isomerization of the enzyme-NAD(+) complex is rate limiting for acetaldehyde reduction catalyzed by the wild-type enzyme, but release of alcohol is limiting for the H51Q enzyme. X-ray crystallography of doubly substituted His51Gln:Lys228Arg ADH complexed with NAD(+) and 2,3- or 2,4-difluorobenzyl alcohol shows that Gln-51 isosterically replaces histidine in interactions with the nicotinamide ribose of the coenzyme and that Arg-228 interacts with the adenosine monophosphate of the coenzyme without affecting the protein conformation. The difluorobenzyl alcohols bind in one conformation. His-51 participates in, but is not essential for, proton transfers in the mechanism.

Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase.,LeBrun LA, Park DH, Ramaswamy S, Plapp BV Biochemistry. 2004 Mar 23;43(11):3014-26. PMID:15023053[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. LeBrun LA, Park DH, Ramaswamy S, Plapp BV. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase. Biochemistry. 2004 Mar 23;43(11):3014-26. PMID:15023053 doi:10.1021/bi036103m

Contents


PDB ID 1qv7

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools