1r3k

From Proteopedia

Jump to: navigation, search

potassium channel KcsA-Fab complex in low concentration of Tl+

Structural highlights

1r3k is a 3 chain structure with sequence from Mus musculus and Streptomyces lividans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:DGA, TL
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

IGKC_MOUSE

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Potassium ions diffuse across the cell membrane in a single file through the narrow selectivity filter of potassium channels. The crystal structure of the KcsA K+ channel revealed the chemical structure of the selectivity filter, which contains four binding sites for K+. In this study, we used Tl+ in place of K+ to address the question of how many ions bind within the filter at a given time, i.e. what is the absolute ion occupancy? By refining the Tl+ structure against data to 1.9A resolution with an anomalous signal, we determined the absolute occupancy of Tl+. Then, by comparing the electron density of Tl+ with that of K+, Rb+ and Cs+, we estimated the absolute occupancy of these three ions. We further analyzed how the ion occupancy affects the conformation of the selectivity filter by analyzing the structure of KcsA at different concentrations of Tl+. Our results indicate that the average occupancy for each site in the selectivity filter is about 0.63 for Tl+ and 0.53 for K+. For K+, Rb+ and Cs+, the total number of ions contained within four sites in the selectivity filter is about two. At low concentrations of permeant ion, the number of ions drops to one in association with a conformational change in the selectivity filter. We conclude that electrostatic balance and coupling of ion binding to a protein conformational change underlie high conduction rates in the setting of high selectivity.

The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates.,Zhou Y, MacKinnon R J Mol Biol. 2003 Nov 7;333(5):965-75. PMID:14583193[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Zhou Y, MacKinnon R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol. 2003 Nov 7;333(5):965-75. PMID:14583193

Contents


PDB ID 1r3k

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools