1snf

From Proteopedia

Jump to: navigation, search

MYCOBACTERIUM TUBERCULOSIS DUTPASE COMPLEXED WITH MAGNESIUM AND DEOXYURIDINE 5'-MONOPHOSPHATE

Structural highlights

1snf is a 3 chain structure with sequence from Mycobacterium tuberculosis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.85Å
Ligands:MG, NO3, TRS, UMP
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DUT_MYCTU This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA.[HAMAP-Rule:MF_00116]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The structure of Mycobacterium tuberculosis dUTP nucleotidohydrolase (dUTPase) has been determined at 1.3 Angstrom resolution in complex with magnesium ion and the non-hydrolyzable substrate analog, alpha,beta-imido dUTP. dUTPase is an enzyme essential for depleting potentially toxic concentrations of dUTP in the cell. Given the importance of its biological role, it has been proposed that inhibiting M.tuberculosis dUTPase might be an effective means to treat tuberculosis infection in humans. The crystal structure presented here offers some insight into the potential for designing a specific inhibitor of the M.tuberculosis dUTPase enzyme. The structure also offers new insights into the mechanism of dUTP hydrolysis by providing an accurate representation of the enzyme-substrate complex in which both the metal ion and dUTP analog are included. The structure suggests that inclusion of a magnesium ion is important for stabilizing the position of the alpha-phosphorus for an in-line nucleophilic attack. In the absence of magnesium, the alpha-phosphate of dUTP can have either of the two positions which differ by 4.5 Angstrom. A transiently ordered C-terminal loop further assists catalysis by shielding the general base, Asp83, from solvent thus elevating its pK(a) so that it might in turn activate a tightly bound water molecule for nucleophilic attack. The metal ion coordinates alpha, beta, and gamma phosphate groups with tridentate geometry identical with that observed in the crystal structure of DNA polymerase beta complexed with magnesium and dNTP analog, revealing some common features in catalytic mechanism.

Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism.,Chan S, Segelke B, Lekin T, Krupka H, Cho US, Kim MY, So M, Kim CY, Naranjo CM, Rogers YC, Park MS, Waldo GS, Pashkov I, Cascio D, Perry JL, Sawaya MR J Mol Biol. 2004 Aug 6;341(2):503-17. PMID:15276840[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Chan S, Segelke B, Lekin T, Krupka H, Cho US, Kim MY, So M, Kim CY, Naranjo CM, Rogers YC, Park MS, Waldo GS, Pashkov I, Cascio D, Perry JL, Sawaya MR. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. J Mol Biol. 2004 Aug 6;341(2):503-17. PMID:15276840 doi:http://dx.doi.org/10.1016/j.jmb.2004.06.028

Contents


PDB ID 1snf

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools