1ttm
From Proteopedia
Human carbonic anhydrase II complexed with 667-coumate
Structural highlights
DiseaseCAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5] FunctionCAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCA (carbonic anhydrase) catalyses the reversible hydration of carbon dioxide into bicarbonate, and at least 14 isoforms have been identified in vertebrates. The role of CA type II in maintaining the fluid and pH balance has made it an attractive drug target for the treatment of glaucoma and cancer. 667-coumate is a potent inhibitor of the novel oncology target steroid sulphatase and is currently in Phase 1 clinical trials for hormone-dependent breast cancer. It also inhibits CA II in vitro. In the present study, CA II was crystallized with 667-coumate and the structure was determined by X-ray crystallography at 1.95 A (1 A=0.1 nm) resolution. The structure reported here is the first for an inhibitor based on a coumarin ring and shows ligation of the sulphamate group to the active-site zinc at 2.15 A through a nitrogen anion. The first two rings of the coumarin moiety are bound within the hydrophobic binding site of CA II. Important residues contributing to binding include Val-121, Phe-131, Val-135, Leu-141, Leu-198 and Pro-202. The third seven-membered ring is more mobile and is located in the channel leading to the surface of the enzyme. Pharmacokinetic studies show enhanced stability of 667-coumate in vivo and this has been ascribed to binding of CA II in erythrocytes. This result provides a structural basis for the stabilization and long half-life of 667-coumate in blood compared with its rapid disappearance in plasma, and suggests that reversible binding of inhibitors to CA may be a general method of delivering this type of labile drug. Crystal structure of human carbonic anhydrase II at 1.95 A resolution in complex with 667-coumate, a novel anti-cancer agent.,Lloyd MD, Pederick RL, Natesh R, Woo LW, Purohit A, Reed MJ, Acharya KR, Potter BV Biochem J. 2005 Feb 1;385(Pt 3):715-20. PMID:15453828[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Acharya KR | Lloyd MD | Natesh R | Pederick RL | Potter BVL | Purohit A | Reed MJ | Woo LWL