1urk

From Proteopedia

Jump to: navigation, search

SOLUTION STRUCTURE OF THE AMINO TERMINAL FRAGMENT OF UROKINASE-TYPE PLASMINOGEN ACTIVATOR

Structural highlights

1urk is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 15 models
Ligands:FUC
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

UROK_HUMAN Defects in PLAU are the cause of Quebec platelet disorder (QPD) [MIM:601709. QPD is an autosomal dominant bleeding disorder due to a gain-of-function defect in fibrinolysis. Although affected individuals do not exhibit systemic fibrinolysis, they show delayed onset bleeding after challenge, such as surgery. The hallmark of the disorder is markedly increased PLAU levels within platelets, which causes intraplatelet plasmin generation and secondary degradation of alpha-granule proteins.[1]

Function

UROK_HUMAN Specifically cleaves the zymogen plasminogen to form the active enzyme plasmin.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The amino-terminal fragment (ATF) of urokinase-type plasminogen activator is a two domain protein which consists of a growth factor and a kringle domain. The 1H, 13C, and 15N chemical shifts of this protein have been assigned using heteronuclear two- and three-dimensional NMR experiments on selective and uniformly 15N- and 15N/13C-labeled protein isolated from mammalian cells that overexpress the protein. The chemical shift assignments were used to interpret the NOE data which resulted in a total of 1299 NOE restraints. The NOE restraints were used along with 27 phi angle restraints and 21 hydrogen-bonding restraints to produce 15 low energy structures. The individual domains in the structures are highly converged, but the two domains are structurally independent. The root mean square deviations (rmsd) between residues 11-46 in the growth factor domain and the mean atomic coordinates were 0.99 +/- 0.2 for backbone heavy atoms and 1.65 +/- 0.2 for all non-hydrogen atoms. For residues 55-130 in the kringle domain, the rmsd was 0.84 +/- 0.2 for backbone heavy atoms and 1.42 +/- 0.2 for all non-hydrogen atoms. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor and other homologous proteins were observed in the region which has been implicated in binding the urokinase receptor which may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

Solution structure of the amino-terminal fragment of urokinase-type plasminogen activator.,Hansen AP, Petros AM, Meadows RP, Nettesheim DG, Mazar AP, Olejniczak ET, Xu RX, Pederson TM, Henkin J, Fesik SW Biochemistry. 1994 Apr 26;33(16):4847-64. PMID:8161544[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Paterson AD, Rommens JM, Bharaj B, Blavignac J, Wong I, Diamandis M, Waye JS, Rivard GE, Hayward CP. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood. 2010 Feb 11;115(6):1264-6. doi: 10.1182/blood-2009-07-233965. Epub 2009, Dec 9. PMID:20007542 doi:10.1182/blood-2009-07-233965
  2. Hansen AP, Petros AM, Meadows RP, Nettesheim DG, Mazar AP, Olejniczak ET, Xu RX, Pederson TM, Henkin J, Fesik SW. Solution structure of the amino-terminal fragment of urokinase-type plasminogen activator. Biochemistry. 1994 Apr 26;33(16):4847-64. PMID:8161544

Contents


PDB ID 1urk

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools