1x2r
From Proteopedia
Structural basis for the defects of human lung cancer somatic mutations in the repression activity of Keap1 on Nrf2
Structural highlights
FunctionKEAP1_MOUSE Retains NFE2L2/NRF2 in the cytosol. Functions as substrate adapter protein for the E3 ubiquitin ligase complex formed by CUL3 and RBX1. Targets NFE2L2/NRF2 for ubiquitination and degradation by the proteasome, thus resulting in the suppression of its transcriptional activity and the repression of antioxidant response element-mediated detoxifying enzyme gene expression. May also retain BPTF in the cytosol. Targets PGAM5 for ubiquitination and degradation by the proteasome (By similarity).[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedNrf2 regulates the cellular oxidative stress response, whereas Keap1 represses Nrf2 through its molecular interaction. To elucidate the molecular mechanism of the Keap1 and Nrf2 interaction, we resolved the six-bladed beta propeller crystal structure of the Kelch/DGR and CTR domains of mouse Keap1 and revealed that extensive inter- and intrablade hydrogen bonds maintain the structural integrity and proper association of Keap1 with Nrf2. A peptide containing the ETGE motif of Nrf2 binds the beta propeller of Keap1 at the entrance of the central cavity on the bottom side via electrostatic interactions with conserved arginine residues. We found a somatic mutation and a gene variation in human lung cancer cells that change glycine to cysteine in the DGR domain, introducing local conformational changes that reduce Keap1's affinity for Nrf2. These results provide a structural basis for the loss of Keap1 function and gain of Nrf2 function. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer.,Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M Mol Cell. 2006 Mar 3;21(5):689-700. PMID:16507366[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Large Structures | Mus musculus | Kang M-I | Kobayashi A | Nakamura Y | Ohta T | Ohtsuji M | Padmanabhan B | Scharlock M | Tong KI | Yamamoto M | Yokoyama S