1yfd
From Proteopedia
Crystal structure of the Y122H mutant of ribonucleotide reductase R2 protein from E. coli
Structural highlights
FunctionRIR2_ECOLI Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe R2 protein subunit of class I ribonucleotide reductase (RNR) belongs to a structurally related family of oxygen bridged diiron proteins. In wild-type R2 of Escherichia coli, reductive cleavage of molecular oxygen by the diferrous iron center generates a radical on a nearby tyrosine residue (Tyr122), which is essential for the enzymatic activity of RNR, converting ribonucleotides into deoxyribonucleotides. In this work, we characterize the mutant E. coli protein R2-Y122H, where the radical site is substituted with a histidine residue. The x-ray structure verifies the mutation. R2-Y122H contains a novel stable paramagnetic center which we name H, and which we have previously proposed to be a diferric iron center with a strongly coupled radical, Fe(III)Fe(III)R.. Here we report a detailed characterization of center H, using 1H/2H -14N/15N- and 57Fe-ENDOR in comparison with the Fe(III)Fe(IV) intermediate X observed in the iron reconstitution reaction of R2. Specific deuterium labeling of phenylalanine residues reveals that the radical results from a phenylalanine. As Phe208 is the only phenylalanine in the ligand sphere of the iron site, and generation of a phenyl radical requires a very high oxidation potential, we propose that in Y122H residue Phe208 is hydroxylated, as observed earlier in another mutant (R2-Y122F/E238A), and further oxidized to a phenoxyl radical, which is coordinated to Fe1. This work demonstrates that small structural changes can redirect the reactivity of the diiron site, leading to oxygenation of a hydrocarbon, as observed in the structurally similar methane monoxygenase, and beyond, to formation of a stable iron-coordinated radical. A new tyrosyl radical on Phe208 as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant R2-Y122H. Combined x-ray diffraction and EPR/ENDOR studies.,Kolberg M, Logan DT, Bleifuss G, Potsch S, Sjoberg BM, Graslund A, Lubitz W, Lassmann G, Lendzian F J Biol Chem. 2005 Mar 25;280(12):11233-46. Epub 2005 Jan 5. PMID:15634667[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Escherichia coli | Large Structures | Bleifuss G | Graeslund A | Kolberg M | Lassmann G | Lendzian F | Logan DT | Lubitz W | Poetsch S | Sjoeberg BM