1z1m

From Proteopedia

Jump to: navigation, search

NMR structure of unliganded MDM2

Structural highlights

1z1m is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding.

Function

MDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Critical to the inhibitory action of the oncogene product, MDM2, on the tumour suppressor, p53, is association of the N-terminal domain of MDM2 (MDM2N) with the transactivation domain of p53. The structure of MDM2N was previously solved with a p53-derived peptide, or small-molecule ligands, occupying its binding cleft, but no structure of the non-liganded MDM2N (i.e. the apo-form) has been reported. Here, we describe the solution structure and dynamics of apo-MDM2N and thus reveal the nature of the conformational changes in MDM2N that accompany binding of p53. The new structure suggests that p53 effects displacement of an N-terminal segment of apo-MDM2N that occludes access to the shallow end of the p53-binding cleft. MDM2N must also undergo an expansion upon binding, achieved through a rearrangement of its two pseudosymetrically related sub-domains resulting in outward displacements of the secondary structural elements that comprise the walls and floor of the p53-binding cleft. MDM2N becomes more rigid and stable upon binding p53. Conformational plasticity of the binding cleft of apo-MDM2N could allow the parent protein to bind specifically to several different partners, although, to date, all the known liganded structures of MDM2N are highly similar to one another. The results indicate that the more open conformation of the binding cleft of MDM2N observed in structures of complexes with small molecules and peptides is a more suitable one for ligand discovery and optimisation.

Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding.,Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, McInnes C, Barlow PN J Mol Biol. 2005 Jul 15;350(3):587-98. PMID:15953616[12]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Girnita L, Girnita A, Larsson O. Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8247-52. Epub 2003 Jun 23. PMID:12821780 doi:10.1073/pnas.1431613100
  2. Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004 Mar 26;13(6):879-86. PMID:15053880
  3. Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol. 2004 Jul;6(7):665-72. Epub 2004 Jun 13. PMID:15195100 doi:10.1038/ncb1147
  4. Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell. 2005 Dec 9;20(5):699-708. PMID:16337594 doi:10.1016/j.molcel.2005.10.017
  5. Brady M, Vlatkovic N, Boyd MT. Regulation of p53 and MDM2 activity by MTBP. Mol Cell Biol. 2005 Jan;25(2):545-53. PMID:15632057 doi:25/2/545
  6. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 2007 Feb 21;26(4):976-86. Epub 2007 Feb 8. PMID:17290220 doi:10.1038/sj.emboj.7601567
  7. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009 Feb;10(2):166-72. doi: 10.1038/embor.2008.231. Epub 2008 Dec 19. PMID:19098711 doi:10.1038/embor.2008.231
  8. Busso CS, Iwakuma T, Izumi T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene. 2009 Apr 2;28(13):1616-25. doi: 10.1038/onc.2009.5. Epub 2009 Feb 16. PMID:19219073 doi:10.1038/onc.2009.5
  9. Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K. ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage. J Biol Chem. 2010 Feb 12;285(7):4909-19. doi: 10.1074/jbc.M109.042341. Epub 2009 , Dec 4. PMID:19965871 doi:10.1074/jbc.M109.042341
  10. Gilmore-Hebert M, Ramabhadran R, Stern DF. Interactions of ErbB4 and Kap1 connect the growth factor and DNA damage response pathways. Mol Cancer Res. 2010 Oct;8(10):1388-98. doi: 10.1158/1541-7786.MCR-10-0042. Epub , 2010 Sep 21. PMID:20858735 doi:10.1158/1541-7786.MCR-10-0042
  11. Fu X, Yucer N, Liu S, Li M, Yi P, Mu JJ, Yang T, Chu J, Jung SY, O'Malley BW, Gu W, Qin J, Wang Y. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4579-84. doi:, 10.1073/pnas.0912094107. Epub 2010 Feb 19. PMID:20173098 doi:10.1073/pnas.0912094107
  12. Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, McInnes C, Barlow PN. Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. J Mol Biol. 2005 Jul 15;350(3):587-98. PMID:15953616 doi:10.1016/j.jmb.2005.05.010

Contents


PDB ID 1z1m

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools