1z3m

From Proteopedia

Jump to: navigation, search

Crystal structure of mutant Ribonuclease S (F8Nva)

Structural highlights

1z3m is a 2 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:NLE, NVA, SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RNAS1_BOVIN Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

While the hydrophobic driving force is thought to be a major contributor to protein stability, it is difficult to experimentally dissect out its contribution to the overall free energy of folding. We have made large to small substitutions of buried hydrophobic residues at positions 8 and 13 in the peptide/protein complex, RNase-S, and have characterized the structures by X-ray crystallography. The thermodynamics of association of these mutant S peptides with S protein was measured in the presence of different concentrations of methanol and ethanol. The reduction in the strength of the hydrophobic driving force in the presence of these organic solvents was estimated from surface-tension data as well as from the dependence of the DeltaC(p) of protein/peptide binding on the alcohol concentration. The data indicated a decrease in the strength of the hydrophobic driving force of about 30-40% over a 0-30% range of the alcohol concentration. We observe that large to small substitutions destabilize the protein. However, the amount of destabilization, relative to the wild type, is independent of the alcohol concentration over the range of alcohol concentrations studied. The data clearly indicate that decreased stability of the mutants is primarily due to the loss of packing interactions rather than a reduced hydrophobic driving force and suggest a value of the hydrophobic driving force of less than 18 cal mol(-)(1) A(2).

Attempts to delineate the relative contributions of changes in hydrophobicity and packing to changes in stability of ribonuclease S mutants.,Das M, Rao BV, Ghosh S, Varadarajan R Biochemistry. 2005 Apr 19;44(15):5923-30. PMID:15823052[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. delCardayre SB, Ribo M, Yokel EM, Quirk DJ, Rutter WJ, Raines RT. Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 1995 Mar;8(3):261-73. PMID:7479688
  2. Das M, Rao BV, Ghosh S, Varadarajan R. Attempts to delineate the relative contributions of changes in hydrophobicity and packing to changes in stability of ribonuclease S mutants. Biochemistry. 2005 Apr 19;44(15):5923-30. PMID:15823052 doi:10.1021/bi050001+

Contents


PDB ID 1z3m

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools