2axm

From Proteopedia

Jump to: navigation, search

HEPARIN-LINKED BIOLOGICALLY-ACTIVE DIMER OF FIBROBLAST GROWTH FACTOR

Structural highlights

2axm is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:IDS, SGN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FGF1_HUMAN Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The fibroblast growth factors (FGFs) form a large family of structurally related, multifunctional proteins that regulate various biological responses. They mediate cellular functions by binding to transmembrane FGF receptors, which are protein tyrosine kinases. FGF receptors are activated by oligomerization, and both this activation and FGF-stimulated biological responses require heparin-like molecules as well as FGF. Heparins are linear anionic polysaccharide chains; they are typically heterogeneously sulphated on alternating L-iduronic and D-glucosamino sugars, and are nearly ubiquitous in animal tissues as heparan sulphate proteoglycans on cell surfaces and in the extracellular matrix. Although several crystal structures have been described for FGF molecules in complexes with heparin-like sugars, the nature of a biologically active complex has been unknown until now. Here we describe the X-ray crystal structure, at 2.9 A resolution, of a biologically active dimer of human acidic FGF in a complex with a fully sulphated, homogeneous heparin decassacharide. The dimerization of heparin-linked acidic FGF observed here is an elegant mechanism for the modulation of signalling through combinatorial homodimerization and heterodimerization of the 12 known members of the FGF family.

Structure of a heparin-linked biologically active dimer of fibroblast growth factor.,DiGabriele AD, Lax I, Chen DI, Svahn CM, Jaye M, Schlessinger J, Hendrickson WA Nature. 1998 Jun 25;393(6687):812-7. PMID:9655399[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
36 reviews cite this structure
Birchmeier et al. (2003)
No citations found

See Also

References

  1. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996 Jun 21;271(25):15292-7. PMID:8663044
  2. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006 Jun 9;281(23):15694-700. Epub 2006 Apr 4. PMID:16597617 doi:10.1074/jbc.M601252200
  3. Fernandez IS, Cuevas P, Angulo J, Lopez-Navajas P, Canales-Mayordomo A, Gonzalez-Corrochano R, Lozano RM, Valverde S, Jimenez-Barbero J, Romero A, Gimenez-Gallego G. Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. J Biol Chem. 2010 Apr 9;285(15):11714-29. Epub 2010 Feb 9. PMID:20145243 doi:10.1074/jbc.M109.064618
  4. DiGabriele AD, Lax I, Chen DI, Svahn CM, Jaye M, Schlessinger J, Hendrickson WA. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature. 1998 Jun 25;393(6687):812-7. PMID:9655399 doi:10.1038/31741

Contents


PDB ID 2axm

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools