2biu
From Proteopedia
Crystal structure of human cyclophilin D at 1.7 A resolution, DMSO complex
Structural highlights
FunctionPPIF_HUMAN PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in regulation of the mitochondrial permeability transition pore (mPTP). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probablity of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated. In cooperation with mitochondrial TP53 is involved in activating oxidative stress-induced necrosis. Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels. Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn the pharmaceutical industry, knowledge of the three-dimensional structure of a specific target facilitates the drug-discovery process. Despite possessing favoured analytical properties such as high purity and monodispersion in light scattering, some proteins are not capable of forming crystals suitable for X-ray analysis. Cyclophilin D, an isoform of cyclophilin that is expressed in the mitochondria, was selected as a drug target for the treatment of cardiac disorders. As the wild-type enzyme defied all attempts at crystallization, protein engineering on the enzyme surface was performed. The K133I mutant gave crystals that diffracted to 1.7 A resolution using in-house X-ray facilities and were suitable for soaking experiments. The crystals were very robust and diffraction was maintained after soaking in 25% DMSO solution: excellent conditions for the rapid analysis of complex structures including crystallographic fragment screening. Crystal engineering yields crystals of cyclophilin D diffracting to 1.7 A resolution.,Schlatter D, Thoma R, Kung E, Stihle M, Muller F, Borroni E, Cesura A, Hennig M Acta Crystallogr D Biol Crystallogr. 2005 May;61(Pt 5):513-9. Epub 2005, Apr 20. PMID:15858260[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|