2brc
From Proteopedia
Structure of a Hsp90 Inhibitor bound to the N-terminus of Yeast Hsp90.
Structural highlights
FunctionHSP82_YEAST Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. The nucleotide-free form of the dimer is found in an open conformation in which the N-termini are not dimerized and the complex is ready for client protein binding. Binding of ATP induces large conformational changes, resulting in the formation of a ring-like closed structure in which the N-terminal domains associate intramolecularly with the middle domain and also dimerize with each other, stimulating their intrinsic ATPase activity and acting as a clamp on the substrate. Finally, ATP hydrolysis results in the release of the substrate. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Required for growth at high temperatures.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHigh-throughput screening identified the 3,4-diarylpyrazole CCT018159 as a novel and potent (7.1 microM) inhibitor of Hsp90 ATPase activity. Here, we describe the synthesis of CCT018159 and a number of close analogues together with data on their biochemical properties. Some initial structure-activity relationships are discussed, as well as the crystal structure of CCT018159 bound to Hsp90. The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors.,Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, Maloney A, Roe SM, Prodromou C, Pearl LH, Aherne GW, McDonald E, Workman P Bioorg Med Chem Lett. 2005 Jul 15;15(14):3338-43. PMID:15955698[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|